| /*********************************************************************** | |
| * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * | |
| * Distributed under the MIT software license, see the accompanying * | |
| * file COPYING or https://www.opensource.org/licenses/mit-license.php.* | |
| ***********************************************************************/ | |
| | |
| #include <stdio.h> | |
| #include <stdlib.h> | |
| #include <string.h> | |
| | |
| #include <time.h> | |
| | |
| #ifdef USE_EXTERNAL_DEFAULT_CALLBACKS | |
| #pragma message("Ignoring USE_EXTERNAL_CALLBACKS in tests.") | |
| #undef USE_EXTERNAL_DEFAULT_CALLBACKS | |
| #endif | |
| #if defined(VERIFY) && defined(COVERAGE) | |
| #pragma message("Defining VERIFY for tests being built for coverage analysis support is meaningless.") | |
| #endif | |
| #include "secp256k1.c" | |
| | |
| #include "../include/secp256k1.h" | |
| #include "../include/secp256k1_preallocated.h" | |
| #include "testrand_impl.h" | |
| #include "checkmem.h" | |
| #include "testutil.h" | |
| #include "util.h" | |
| #include "unit_test.h" | |
| #include "unit_test.c" | |
| | |
| #include "../contrib/lax_der_parsing.c" | |
| #include "../contrib/lax_der_privatekey_parsing.c" | |
| | |
| #include "modinv32_impl.h" | |
| #ifdef SECP256K1_WIDEMUL_INT128 | |
| #include "modinv64_impl.h" | |
| #include "int128_impl.h" | |
| #endif | |
| | |
| #define CONDITIONAL_TEST(cnt, nam) if (COUNT < (cnt)) { printf("Skipping %s (iteration count too low)\n", nam); } else | |
| | |
| static secp256k1_context *CTX = NULL; | |
| static secp256k1_context *STATIC_CTX = NULL; | |
| | |
| static int all_bytes_equal(const void* s, unsigned char value, size_t n) { | |
| const unsigned char *p = s; | |
| size_t i; | |
| | |
| for (i = 0; i < n; i++) { | |
| if (p[i] != value) { | |
| return 0; | |
| } | |
| } | |
| return 1; | |
| } | |
| | |
| #define CHECK_COUNTING_CALLBACK_VOID(ctx, expr_or_stmt, callback, callback_setter) do { \ | |
| expanded from macro 'CHECK_COUNTING_CALLBACK_VOID' | |
| int32_t _calls_to_callback = 0; \ | |
| secp256k1_callback _saved_callback = ctx->callback; \ | |
| callback_setter(ctx, counting_callback_fn, &_calls_to_callback); \ | |
| { expr_or_stmt; } \ | |
| expanded from macro 'CHECK_COUNTING_CALLBACK_VOID' | |
| ctx->callback = _saved_callback; \ | |
| expanded from macro 'CHECK_COUNTING_CALLBACK_VOID' | |
| CHECK(_calls_to_callback == 1); \ | |
| expanded from macro 'CHECK_COUNTING_CALLBACK_VOID' | |
| } while(0); | |
| | |
| /* CHECK that expr_or_stmt calls the error or illegal callback of ctx exactly once | |
| * | |
| * Useful for checking functions that return void (e.g., API functions that use ARG_CHECK_VOID) */ | |
| #define CHECK_ERROR_VOID(ctx, expr_or_stmt) \ | |
| CHECK_COUNTING_CALLBACK_VOID(ctx, expr_or_stmt, error_callback, secp256k1_context_set_error_callback) | |
| expanded from macro 'CHECK_ERROR_VOID' | |
| expanded from macro 'CHECK_ERROR_VOID' | |
| #define CHECK_ILLEGAL_VOID(ctx, expr_or_stmt) \ | |
| CHECK_COUNTING_CALLBACK_VOID(ctx, expr_or_stmt, illegal_callback, secp256k1_context_set_illegal_callback) | |
| expanded from macro 'CHECK_ILLEGAL_VOID' | |
| expanded from macro 'CHECK_ILLEGAL_VOID' | |
| | |
| /* CHECK that | |
| * - expr calls the illegal callback of ctx exactly once and, | |
| * - expr == 0 (or equivalently, expr == NULL) | |
| * | |
| * Useful for checking functions that return an integer or a pointer. */ | |
| #define CHECK_ILLEGAL(ctx, expr) CHECK_ILLEGAL_VOID(ctx, CHECK((expr) == 0)) | |
| expanded from macro 'CHECK_ILLEGAL' | |
| expanded from macro 'CHECK_ILLEGAL' | |
| #define CHECK_ERROR(ctx, expr) CHECK_ERROR_VOID(ctx, CHECK((expr) == 0)) | |
| expanded from macro 'CHECK_ERROR' | |
| expanded from macro 'CHECK_ERROR' | |
| | |
| static void counting_callback_fn(const char* str, void* data) { | |
| /* Dummy callback function that just counts. */ | |
| int32_t *p; | |
| (void)str; | |
| p = data; | |
| CHECK(*p != INT32_MAX); | |
| (*p)++; | |
| } | |
| | |
| static void run_xoshiro256pp_tests(void) { | |
| { | |
| size_t i; | |
| /* Sanity check that we run before the actual seeding. */ | |
| for (i = 0; i < sizeof(secp256k1_test_state)/sizeof(secp256k1_test_state[0]); i++) { | |
| CHECK(secp256k1_test_state[i] == 0); | |
| } | |
| } | |
| { | |
| int i; | |
| unsigned char buf32[32]; | |
| unsigned char seed16[16] = { | |
| 'C', 'H', 'I', 'C', 'K', 'E', 'N', '!', | |
| 'C', 'H', 'I', 'C', 'K', 'E', 'N', '!', | |
| }; | |
| unsigned char buf32_expected[32] = { | |
| 0xAF, 0xCC, 0xA9, 0x16, 0xB5, 0x6C, 0xE3, 0xF0, | |
| 0x44, 0x3F, 0x45, 0xE0, 0x47, 0xA5, 0x08, 0x36, | |
| 0x4C, 0xCC, 0xC1, 0x18, 0xB2, 0xD8, 0x8F, 0xEF, | |
| 0x43, 0x26, 0x15, 0x57, 0x37, 0x00, 0xEF, 0x30, | |
| }; | |
| testrand_seed(seed16); | |
| for (i = 0; i < 17; i++) { | |
| testrand256(buf32); | |
| } | |
| CHECK(secp256k1_memcmp_var(buf32, buf32_expected, sizeof(buf32)) == 0); | |
| } | |
| } | |
| | |
| static void run_selftest_tests(void) { | |
| /* Test public API */ | |
| secp256k1_selftest(); | |
| } | |
| | |
| static int ecmult_gen_context_eq(const secp256k1_ecmult_gen_context *a, const secp256k1_ecmult_gen_context *b) { | |
| return a->built == b->built | |
| && secp256k1_scalar_eq(&a->scalar_offset, &b->scalar_offset) | |
| && secp256k1_ge_eq_var(&a->ge_offset, &b->ge_offset) | |
| && secp256k1_fe_equal(&a->proj_blind, &b->proj_blind); | |
| } | |
| | |
| static int context_eq(const secp256k1_context *a, const secp256k1_context *b) { | |
| return a->declassify == b->declassify | |
| && ecmult_gen_context_eq(&a->ecmult_gen_ctx, &b->ecmult_gen_ctx) | |
| && a->illegal_callback.fn == b->illegal_callback.fn | |
| && a->illegal_callback.data == b->illegal_callback.data | |
| && a->error_callback.fn == b->error_callback.fn | |
| && a->error_callback.data == b->error_callback.data; | |
| } | |
| | |
| static void run_deprecated_context_flags_test(void) { | |
| /* Check that a context created with any of the flags in the flags array is | |
| * identical to the NONE context. */ | |
| unsigned int flags[] = { SECP256K1_CONTEXT_SIGN, | |
| SECP256K1_CONTEXT_VERIFY, | |
| SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY }; | |
| secp256k1_context *none_ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); | |
| int i; | |
| for (i = 0; i < (int)(sizeof(flags)/sizeof(flags[0])); i++) { | |
| secp256k1_context *tmp_ctx; | |
| CHECK(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE) == secp256k1_context_preallocated_size(flags[i])); | |
| tmp_ctx = secp256k1_context_create(flags[i]); | |
| CHECK(context_eq(none_ctx, tmp_ctx)); | |
| secp256k1_context_destroy(tmp_ctx); | |
| } | |
| secp256k1_context_destroy(none_ctx); | |
| } | |
| | |
| static void run_ec_illegal_argument_tests(void) { | |
| secp256k1_pubkey pubkey; | |
| secp256k1_pubkey zero_pubkey; | |
| secp256k1_ecdsa_signature sig; | |
| unsigned char ctmp[32]; | |
| | |
| /* Setup */ | |
| memset(ctmp, 1, 32); | |
| memset(&zero_pubkey, 0, sizeof(zero_pubkey)); | |
| | |
| /* Verify context-type checking illegal-argument errors. */ | |
| CHECK_ILLEGAL(STATIC_CTX, secp256k1_ec_pubkey_create(STATIC_CTX, &pubkey, ctmp)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, ctmp) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(STATIC_CTX, secp256k1_ecdsa_sign(STATIC_CTX, &sig, ctmp, ctmp, NULL, NULL)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&sig, sizeof(sig)); | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig, ctmp, ctmp, NULL, NULL) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&sig, sizeof(sig)); | |
| CHECK(secp256k1_ecdsa_verify(CTX, &sig, ctmp, &pubkey) == 1); | |
| CHECK(secp256k1_ecdsa_verify(STATIC_CTX, &sig, ctmp, &pubkey) == 1); | |
| CHECK(secp256k1_ec_pubkey_tweak_add(CTX, &pubkey, ctmp) == 1); | |
| CHECK(secp256k1_ec_pubkey_tweak_add(STATIC_CTX, &pubkey, ctmp) == 1); | |
| CHECK(secp256k1_ec_pubkey_tweak_mul(CTX, &pubkey, ctmp) == 1); | |
| CHECK(secp256k1_ec_pubkey_negate(STATIC_CTX, &pubkey) == 1); | |
| CHECK(secp256k1_ec_pubkey_negate(CTX, &pubkey) == 1); | |
| CHECK_ILLEGAL(STATIC_CTX, secp256k1_ec_pubkey_negate(STATIC_CTX, &zero_pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_negate(CTX, NULL)); | |
| CHECK(secp256k1_ec_pubkey_tweak_mul(STATIC_CTX, &pubkey, ctmp) == 1); | |
| } | |
| | |
| static void run_static_context_tests(int use_prealloc) { | |
| /* Check that deprecated secp256k1_context_no_precomp is an alias to secp256k1_context_static. */ | |
| CHECK(secp256k1_context_no_precomp == secp256k1_context_static); | |
| Assuming the condition is false | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| | |
| { | |
| unsigned char seed[32] = {0x17}; | |
| | |
| /* Randomizing secp256k1_context_static is not supported. */ | |
| CHECK_ILLEGAL(STATIC_CTX, secp256k1_context_randomize(STATIC_CTX, seed)); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK_ILLEGAL(STATIC_CTX, secp256k1_context_randomize(STATIC_CTX, NULL)); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| | |
| /* Destroying or cloning secp256k1_context_static is not supported. */ | |
| if (use_prealloc) { | |
| Taking false branch | |
| Assuming 'use_prealloc' is 0 | |
| CHECK_ILLEGAL(STATIC_CTX, secp256k1_context_preallocated_clone_size(STATIC_CTX)); | |
| { | |
| secp256k1_context *my_static_ctx = malloc(sizeof(*STATIC_CTX)); | |
| CHECK(my_static_ctx != NULL); | |
| memset(my_static_ctx, 0x2a, sizeof(*my_static_ctx)); | |
| CHECK_ILLEGAL(STATIC_CTX, secp256k1_context_preallocated_clone(STATIC_CTX, my_static_ctx)); | |
| CHECK(all_bytes_equal(my_static_ctx, 0x2a, sizeof(*my_static_ctx))); | |
| free(my_static_ctx); | |
| } | |
| CHECK_ILLEGAL_VOID(STATIC_CTX, secp256k1_context_preallocated_destroy(STATIC_CTX)); | |
| } else { | |
| CHECK_ILLEGAL(STATIC_CTX, secp256k1_context_clone(STATIC_CTX)); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK_ILLEGAL_VOID(STATIC_CTX, secp256k1_context_destroy(STATIC_CTX)); | |
| Use of memory after it is freed | |
| Use of memory after it is freed | |
| Calling 'secp256k1_context_destroy' | |
| Returning; memory was released via 1st parameter | |
| } | |
| } | |
| | |
| { | |
| /* Verify that setting and resetting illegal callback works */ | |
| int32_t dummy = 0; | |
| secp256k1_context_set_illegal_callback(STATIC_CTX, counting_callback_fn, &dummy); | |
| CHECK(STATIC_CTX->illegal_callback.fn == counting_callback_fn); | |
| CHECK(STATIC_CTX->illegal_callback.data == &dummy); | |
| secp256k1_context_set_illegal_callback(STATIC_CTX, NULL, NULL); | |
| CHECK(STATIC_CTX->illegal_callback.fn == secp256k1_default_illegal_callback_fn); | |
| CHECK(STATIC_CTX->illegal_callback.data == NULL); | |
| } | |
| } | |
| | |
| static void run_all_static_context_tests(void) | |
| { | |
| run_static_context_tests(0); | |
| run_static_context_tests(1); | |
| } | |
| | |
| static void run_proper_context_tests(int use_prealloc) { | |
| int32_t dummy = 0; | |
| secp256k1_context *my_ctx, *my_ctx_fresh; | |
| void *my_ctx_prealloc = NULL; | |
| unsigned char seed[32] = {0x17}; | |
| | |
| secp256k1_gej pubj; | |
| secp256k1_ge pub; | |
| secp256k1_scalar msg, key, nonce; | |
| secp256k1_scalar sigr, sigs; | |
| | |
| /* Fresh reference context for comparison */ | |
| my_ctx_fresh = secp256k1_context_create(SECP256K1_CONTEXT_NONE); | |
| | |
| if (use_prealloc) { | |
| my_ctx_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); | |
| CHECK(my_ctx_prealloc != NULL); | |
| my_ctx = secp256k1_context_preallocated_create(my_ctx_prealloc, SECP256K1_CONTEXT_NONE); | |
| } else { | |
| my_ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); | |
| } | |
| | |
| /* Randomize and reset randomization */ | |
| CHECK(context_eq(my_ctx, my_ctx_fresh)); | |
| CHECK(secp256k1_context_randomize(my_ctx, seed) == 1); | |
| CHECK(!context_eq(my_ctx, my_ctx_fresh)); | |
| CHECK(secp256k1_context_randomize(my_ctx, NULL) == 1); | |
| CHECK(context_eq(my_ctx, my_ctx_fresh)); | |
| | |
| /* set error callback (to a function that still aborts in case malloc() fails in secp256k1_context_clone() below) */ | |
| secp256k1_context_set_error_callback(my_ctx, secp256k1_default_illegal_callback_fn, NULL); | |
| CHECK(my_ctx->error_callback.fn != secp256k1_default_error_callback_fn); | |
| CHECK(my_ctx->error_callback.fn == secp256k1_default_illegal_callback_fn); | |
| | |
| /* check if sizes for cloning are consistent */ | |
| CHECK(secp256k1_context_preallocated_clone_size(my_ctx) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); | |
| | |
| /*** clone and destroy all of them to make sure cloning was complete ***/ | |
| { | |
| secp256k1_context *ctx_tmp; | |
| | |
| if (use_prealloc) { | |
| /* clone into a non-preallocated context and then again into a new preallocated one. */ | |
| ctx_tmp = my_ctx; | |
| my_ctx = secp256k1_context_clone(my_ctx); | |
| CHECK(context_eq(ctx_tmp, my_ctx)); | |
| secp256k1_context_preallocated_destroy(ctx_tmp); | |
| | |
| free(my_ctx_prealloc); | |
| my_ctx_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); | |
| CHECK(my_ctx_prealloc != NULL); | |
| ctx_tmp = my_ctx; | |
| my_ctx = secp256k1_context_preallocated_clone(my_ctx, my_ctx_prealloc); | |
| CHECK(context_eq(ctx_tmp, my_ctx)); | |
| secp256k1_context_destroy(ctx_tmp); | |
| } else { | |
| /* clone into a preallocated context and then again into a new non-preallocated one. */ | |
| void *prealloc_tmp; | |
| | |
| prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); | |
| CHECK(prealloc_tmp != NULL); | |
| ctx_tmp = my_ctx; | |
| my_ctx = secp256k1_context_preallocated_clone(my_ctx, prealloc_tmp); | |
| CHECK(context_eq(ctx_tmp, my_ctx)); | |
| secp256k1_context_destroy(ctx_tmp); | |
| | |
| ctx_tmp = my_ctx; | |
| my_ctx = secp256k1_context_clone(my_ctx); | |
| CHECK(context_eq(ctx_tmp, my_ctx)); | |
| secp256k1_context_preallocated_destroy(ctx_tmp); | |
| free(prealloc_tmp); | |
| } | |
| } | |
| | |
| /* Verify that the error callback makes it across the clone. */ | |
| CHECK(my_ctx->error_callback.fn != secp256k1_default_error_callback_fn); | |
| CHECK(my_ctx->error_callback.fn == secp256k1_default_illegal_callback_fn); | |
| /* And that it resets back to default. */ | |
| secp256k1_context_set_error_callback(my_ctx, NULL, NULL); | |
| CHECK(my_ctx->error_callback.fn == secp256k1_default_error_callback_fn); | |
| CHECK(context_eq(my_ctx, my_ctx_fresh)); | |
| | |
| /* Verify that setting and resetting illegal callback works */ | |
| secp256k1_context_set_illegal_callback(my_ctx, counting_callback_fn, &dummy); | |
| CHECK(my_ctx->illegal_callback.fn == counting_callback_fn); | |
| CHECK(my_ctx->illegal_callback.data == &dummy); | |
| secp256k1_context_set_illegal_callback(my_ctx, NULL, NULL); | |
| CHECK(my_ctx->illegal_callback.fn == secp256k1_default_illegal_callback_fn); | |
| CHECK(my_ctx->illegal_callback.data == NULL); | |
| CHECK(context_eq(my_ctx, my_ctx_fresh)); | |
| | |
| /*** attempt to use them ***/ | |
| testutil_random_scalar_order_test(&msg); | |
| testutil_random_scalar_order_test(&key); | |
| secp256k1_ecmult_gen(&my_ctx->ecmult_gen_ctx, &pubj, &key); | |
| secp256k1_ge_set_gej(&pub, &pubj); | |
| | |
| /* obtain a working nonce */ | |
| do { | |
| testutil_random_scalar_order_test(&nonce); | |
| } while(!secp256k1_ecdsa_sig_sign(&my_ctx->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL)); | |
| | |
| /* try signing */ | |
| CHECK(secp256k1_ecdsa_sig_sign(&my_ctx->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL)); | |
| | |
| /* try verifying */ | |
| CHECK(secp256k1_ecdsa_sig_verify(&sigr, &sigs, &pub, &msg)); | |
| | |
| /* cleanup */ | |
| if (use_prealloc) { | |
| secp256k1_context_preallocated_destroy(my_ctx); | |
| free(my_ctx_prealloc); | |
| } else { | |
| secp256k1_context_destroy(my_ctx); | |
| } | |
| secp256k1_context_destroy(my_ctx_fresh); | |
| | |
| /* Defined as no-op. */ | |
| secp256k1_context_destroy(NULL); | |
| secp256k1_context_preallocated_destroy(NULL); | |
| } | |
| | |
| static void run_all_proper_context_tests(void) | |
| { | |
| run_proper_context_tests(0); | |
| run_proper_context_tests(1); | |
| } | |
| | |
| static void run_scratch_tests(void) { | |
| const size_t adj_alloc = ((500 + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT; | |
| | |
| size_t checkpoint; | |
| size_t checkpoint_2; | |
| secp256k1_scratch_space *scratch; | |
| secp256k1_scratch_space local_scratch; | |
| | |
| /* Test public API */ | |
| scratch = secp256k1_scratch_space_create(CTX, 1000); | |
| CHECK(scratch != NULL); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| 'scratch' is not equal to null | |
| | |
| /* Test internal API */ | |
| CHECK(secp256k1_scratch_max_allocation(&CTX->error_callback, scratch, 0) == 1000); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| Assuming the condition is true | |
| CHECK(secp256k1_scratch_max_allocation(&CTX->error_callback, scratch, 1) == 1000 - (ALIGNMENT - 1)); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK(scratch->alloc_size == 0); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| Assuming field 'alloc_size' is equal to 0 | |
| CHECK(scratch->alloc_size % ALIGNMENT == 0); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| | |
| /* Allocating 500 bytes succeeds */ | |
| checkpoint = secp256k1_scratch_checkpoint(&CTX->error_callback, scratch); | |
| CHECK(secp256k1_scratch_alloc(&CTX->error_callback, scratch, 500) != NULL); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK(secp256k1_scratch_max_allocation(&CTX->error_callback, scratch, 0) == 1000 - adj_alloc); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| Assuming the condition is true | |
| CHECK(secp256k1_scratch_max_allocation(&CTX->error_callback, scratch, 1) == 1000 - adj_alloc - (ALIGNMENT - 1)); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK(scratch->alloc_size != 0); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| Assuming field 'alloc_size' is not equal to 0 | |
| CHECK(scratch->alloc_size % ALIGNMENT == 0); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| Assuming the condition is true | |
| | |
| /* Allocating another 501 bytes fails */ | |
| CHECK(secp256k1_scratch_alloc(&CTX->error_callback, scratch, 501) == NULL); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK(secp256k1_scratch_max_allocation(&CTX->error_callback, scratch, 0) == 1000 - adj_alloc); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK(secp256k1_scratch_max_allocation(&CTX->error_callback, scratch, 1) == 1000 - adj_alloc - (ALIGNMENT - 1)); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK(scratch->alloc_size != 0); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| Field 'alloc_size' is not equal to 0 | |
| CHECK(scratch->alloc_size % ALIGNMENT == 0); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| | |
| /* ...but it succeeds once we apply the checkpoint to undo it */ | |
| secp256k1_scratch_apply_checkpoint(&CTX->error_callback, scratch, checkpoint); | |
| CHECK(scratch->alloc_size == 0); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK(secp256k1_scratch_max_allocation(&CTX->error_callback, scratch, 0) == 1000); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| Assuming the condition is true | |
| CHECK(secp256k1_scratch_alloc(&CTX->error_callback, scratch, 500) != NULL); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK(scratch->alloc_size != 0); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| | |
| /* try to apply a bad checkpoint */ | |
| checkpoint_2 = secp256k1_scratch_checkpoint(&CTX->error_callback, scratch); | |
| secp256k1_scratch_apply_checkpoint(&CTX->error_callback, scratch, checkpoint); | |
| CHECK_ERROR_VOID(CTX, secp256k1_scratch_apply_checkpoint(&CTX->error_callback, scratch, checkpoint_2)); /* checkpoint_2 is after checkpoint */ | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK_ERROR_VOID(CTX, secp256k1_scratch_apply_checkpoint(&CTX->error_callback, scratch, (size_t) -1)); /* this is just wildly invalid */ | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| | |
| /* try to use badly initialized scratch space */ | |
| secp256k1_scratch_space_destroy(CTX, scratch); | |
| memset(&local_scratch, 0, sizeof(local_scratch)); | |
| scratch = &local_scratch; | |
| CHECK_ERROR(CTX, secp256k1_scratch_max_allocation(&CTX->error_callback, scratch, 0)); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK_ERROR(CTX, secp256k1_scratch_alloc(&CTX->error_callback, scratch, 500)); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| CHECK_ERROR_VOID(CTX, secp256k1_scratch_space_destroy(CTX, scratch)); | |
| Calling 'secp256k1_scratch_space_destroy' | |
| | |
| /* Test that large integers do not wrap around in a bad way */ | |
| scratch = secp256k1_scratch_space_create(CTX, 1000); | |
| /* Try max allocation with a large number of objects. Only makes sense if | |
| * ALIGNMENT is greater than 1 because otherwise the objects take no extra | |
| * space. */ | |
| CHECK(ALIGNMENT <= 1 || !secp256k1_scratch_max_allocation(&CTX->error_callback, scratch, (SIZE_MAX / (ALIGNMENT - 1)) + 1)); | |
| /* Try allocating SIZE_MAX to test wrap around which only happens if | |
| * ALIGNMENT > 1, otherwise it returns NULL anyway because the scratch | |
| * space is too small. */ | |
| CHECK(secp256k1_scratch_alloc(&CTX->error_callback, scratch, SIZE_MAX) == NULL); | |
| secp256k1_scratch_space_destroy(CTX, scratch); | |
| | |
| /* cleanup */ | |
| secp256k1_scratch_space_destroy(CTX, NULL); /* no-op */ | |
| } | |
| | |
| static void run_ctz_tests(void) { | |
| static const uint32_t b32[] = {1, 0xffffffff, 0x5e56968f, 0xe0d63129}; | |
| static const uint64_t b64[] = {1, 0xffffffffffffffff, 0xbcd02462139b3fc3, 0x98b5f80c769693ef}; | |
| int shift; | |
| unsigned i; | |
| for (i = 0; i < sizeof(b32) / sizeof(b32[0]); ++i) { | |
| for (shift = 0; shift < 32; ++shift) { | |
| CHECK(secp256k1_ctz32_var_debruijn(b32[i] << shift) == shift); | |
| CHECK(secp256k1_ctz32_var(b32[i] << shift) == shift); | |
| } | |
| } | |
| for (i = 0; i < sizeof(b64) / sizeof(b64[0]); ++i) { | |
| for (shift = 0; shift < 64; ++shift) { | |
| CHECK(secp256k1_ctz64_var_debruijn(b64[i] << shift) == shift); | |
| CHECK(secp256k1_ctz64_var(b64[i] << shift) == shift); | |
| } | |
| } | |
| } | |
| | |
| /***** HASH TESTS *****/ | |
| | |
| static void run_sha256_known_output_tests(void) { | |
| static const char *inputs[] = { | |
| "", "abc", "message digest", "secure hash algorithm", "SHA256 is considered to be safe", | |
| "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", | |
| "For this sample, this 63-byte string will be used as input data", | |
| "This is exactly 64 bytes long, not counting the terminating byte", | |
| "aaaaa", | |
| }; | |
| static const unsigned int repeat[] = { | |
| 1, 1, 1, 1, 1, 1, 1, 1, 1000000/5 | |
| }; | |
| static const unsigned char outputs[][32] = { | |
| {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55}, | |
| {0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad}, | |
| {0xf7, 0x84, 0x6f, 0x55, 0xcf, 0x23, 0xe1, 0x4e, 0xeb, 0xea, 0xb5, 0xb4, 0xe1, 0x55, 0x0c, 0xad, 0x5b, 0x50, 0x9e, 0x33, 0x48, 0xfb, 0xc4, 0xef, 0xa3, 0xa1, 0x41, 0x3d, 0x39, 0x3c, 0xb6, 0x50}, | |
| {0xf3, 0x0c, 0xeb, 0x2b, 0xb2, 0x82, 0x9e, 0x79, 0xe4, 0xca, 0x97, 0x53, 0xd3, 0x5a, 0x8e, 0xcc, 0x00, 0x26, 0x2d, 0x16, 0x4c, 0xc0, 0x77, 0x08, 0x02, 0x95, 0x38, 0x1c, 0xbd, 0x64, 0x3f, 0x0d}, | |
| {0x68, 0x19, 0xd9, 0x15, 0xc7, 0x3f, 0x4d, 0x1e, 0x77, 0xe4, 0xe1, 0xb5, 0x2d, 0x1f, 0xa0, 0xf9, 0xcf, 0x9b, 0xea, 0xea, 0xd3, 0x93, 0x9f, 0x15, 0x87, 0x4b, 0xd9, 0x88, 0xe2, 0xa2, 0x36, 0x30}, | |
| {0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1}, | |
| {0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e, 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42}, | |
| {0xab, 0x64, 0xef, 0xf7, 0xe8, 0x8e, 0x2e, 0x46, 0x16, 0x5e, 0x29, 0xf2, 0xbc, 0xe4, 0x18, 0x26, 0xbd, 0x4c, 0x7b, 0x35, 0x52, 0xf6, 0xb3, 0x82, 0xa9, 0xe7, 0xd3, 0xaf, 0x47, 0xc2, 0x45, 0xf8}, | |
| {0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7, 0xe2, 0x84, 0xd7, 0x3e, 0x67, 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97, 0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0}, | |
| }; | |
| unsigned int i, ninputs; | |
| | |
| /* Skip last input vector for low iteration counts */ | |
| ninputs = sizeof(inputs)/sizeof(inputs[0]) - 1; | |
| CONDITIONAL_TEST(16, "run_sha256_known_output_tests 1000000") ninputs++; | |
| | |
| for (i = 0; i < ninputs; i++) { | |
| unsigned char out[32]; | |
| secp256k1_sha256 hasher; | |
| unsigned int j; | |
| /* 1. Run: simply write the input bytestrings */ | |
| j = repeat[i]; | |
| secp256k1_sha256_initialize(&hasher); | |
| while (j > 0) { | |
| secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); | |
| j--; | |
| } | |
| secp256k1_sha256_finalize(&hasher, out); | |
| CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0); | |
| /* 2. Run: split the input bytestrings randomly before writing */ | |
| if (strlen(inputs[i]) > 0) { | |
| int split = testrand_int(strlen(inputs[i])); | |
| secp256k1_sha256_initialize(&hasher); | |
| j = repeat[i]; | |
| while (j > 0) { | |
| secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); | |
| secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); | |
| j--; | |
| } | |
| secp256k1_sha256_finalize(&hasher, out); | |
| CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0); | |
| } | |
| } | |
| } | |
| | |
| /** SHA256 counter tests | |
| | |
| The tests verify that the SHA256 counter doesn't wrap around at message length | |
| 2^i bytes for i = 20, ..., 33. This wide range aims at being independent of the | |
| implementation of the counter and it catches multiple natural 32-bit overflows | |
| (e.g., counting bits, counting bytes, counting blocks, ...). | |
| | |
| The test vectors have been generated using following Python script which relies | |
| on https://github.com/cloudtools/sha256/ (v0.3 on Python v3.10.2). | |
| | |
| ``` | |
| from sha256 import sha256 | |
| from copy import copy | |
| | |
| def midstate_c_definition(hasher): | |
| ret = ' {{0x' + hasher.state[0].hex('_', 4).replace('_', ', 0x') + '},\n' | |
| ret += ' {0x00}, ' + str(hex(hasher.state[1])) + '}' | |
| return ret | |
| | |
| def output_c_literal(hasher): | |
| return '{0x' + hasher.digest().hex('_').replace('_', ', 0x') + '}' | |
| | |
| MESSAGE = b'abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno' | |
| assert(len(MESSAGE) == 64) | |
| BYTE_BOUNDARIES = [(2**b)//len(MESSAGE) - 1 for b in range(20, 34)] | |
| | |
| midstates = [] | |
| digests = [] | |
| hasher = sha256() | |
| for i in range(BYTE_BOUNDARIES[-1] + 1): | |
| if i in BYTE_BOUNDARIES: | |
| midstates.append(midstate_c_definition(hasher)) | |
| hasher_copy = copy(hasher) | |
| hasher_copy.update(MESSAGE) | |
| digests.append(output_c_literal(hasher_copy)) | |
| hasher.update(MESSAGE) | |
| | |
| for x in midstates: | |
| print(x + ',') | |
| | |
| for x in digests: | |
| print(x + ',') | |
| ``` | |
| */ | |
| static void run_sha256_counter_tests(void) { | |
| static const char *input = "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno"; | |
| static const secp256k1_sha256 midstates[] = { | |
| {{0xa2b5c8bb, 0x26c88bb3, 0x2abdc3d2, 0x9def99a3, 0xdfd21a6e, 0x41fe585b, 0x7ef2c440, 0x2b79adda}, | |
| {0x00}, 0xfffc0}, | |
| {{0xa0d29445, 0x9287de66, 0x76aabd71, 0x41acd765, 0x0c7528b4, 0x84e14906, 0x942faec6, 0xcc5a7b26}, | |
| {0x00}, 0x1fffc0}, | |
| {{0x50449526, 0xb9f1d657, 0xa0fc13e9, 0x50860f10, 0xa550c431, 0x3fbc97c1, 0x7bbb2d89, 0xdb67bac1}, | |
| {0x00}, 0x3fffc0}, | |
| {{0x54a6efdc, 0x46762e7b, 0x88bfe73f, 0xbbd149c7, 0x41620c43, 0x1168da7b, 0x2c5960f9, 0xeccffda6}, | |
| {0x00}, 0x7fffc0}, | |
| {{0x2515a8f5, 0x5faa2977, 0x3a850486, 0xac858cad, 0x7b7276ee, 0x235c0385, 0xc53a157c, 0x7cb3e69c}, | |
| {0x00}, 0xffffc0}, | |
| {{0x34f39828, 0x409fedb7, 0x4bbdd0fb, 0x3b643634, 0x7806bf2e, 0xe0d1b713, 0xca3f2e1e, 0xe38722c2}, | |
| {0x00}, 0x1ffffc0}, | |
| {{0x389ef5c5, 0x38c54167, 0x8f5d56ab, 0x582a75cc, 0x8217caef, 0xf10947dd, 0x6a1998a8, 0x048f0b8c}, | |
| {0x00}, 0x3ffffc0}, | |
| {{0xd6c3f394, 0x0bee43b9, 0x6783f497, 0x29fa9e21, 0x6ce491c1, 0xa81fe45e, 0x2fc3859a, 0x269012d0}, | |
| {0x00}, 0x7ffffc0}, | |
| {{0x6dd3c526, 0x44d88aa0, 0x806a1bae, 0xfbcc0d32, 0x9d6144f3, 0x9d2bd757, 0x9851a957, 0xb50430ad}, | |
| {0x00}, 0xfffffc0}, | |
| {{0x2add4021, 0xdfe8a9e6, 0xa56317c6, 0x7a15f5bb, 0x4a48aacd, 0x5d368414, 0x4f00e6f0, 0xd9355023}, | |
| {0x00}, 0x1fffffc0}, | |
| {{0xb66666b4, 0xdbeac32b, 0x0ea351ae, 0xcba9da46, 0x6278b874, 0x8c508e23, 0xe16ca776, 0x8465bac1}, | |
| {0x00}, 0x3fffffc0}, | |
| {{0xb6744789, 0x9cce87aa, 0xc4c478b7, 0xf38404d8, 0x2e38ba62, 0xa3f7019b, 0x50458fe7, 0x3047dbec}, | |
| {0x00}, 0x7fffffc0}, | |
| {{0x8b1297ba, 0xba261a80, 0x2ba1b0dd, 0xfbc67d6d, 0x61072c4e, 0x4b5a2a0f, 0x52872760, 0x2dfeb162}, | |
| {0x00}, 0xffffffc0}, | |
| {{0x24f33cf7, 0x41ad6583, 0x41c8ff5d, 0xca7ef35f, 0x50395756, 0x021b743e, 0xd7126cd7, 0xd037473a}, | |
| {0x00}, 0x1ffffffc0}, | |
| }; | |
| static const unsigned char outputs[][32] = { | |
| {0x0e, 0x83, 0xe2, 0xc9, 0x4f, 0xb2, 0xb8, 0x2b, 0x89, 0x06, 0x92, 0x78, 0x04, 0x03, 0x48, 0x5c, 0x48, 0x44, 0x67, 0x61, 0x77, 0xa4, 0xc7, 0x90, 0x9e, 0x92, 0x55, 0x10, 0x05, 0xfe, 0x39, 0x15}, | |
| {0x1d, 0x1e, 0xd7, 0xb8, 0xa3, 0xa7, 0x8a, 0x79, 0xfd, 0xa0, 0x05, 0x08, 0x9c, 0xeb, 0xf0, 0xec, 0x67, 0x07, 0x9f, 0x8e, 0x3c, 0x0d, 0x8e, 0xf9, 0x75, 0x55, 0x13, 0xc1, 0xe8, 0x77, 0xf8, 0xbb}, | |
| {0x66, 0x95, 0x6c, 0xc9, 0xe0, 0x39, 0x65, 0xb6, 0xb0, 0x05, 0xd1, 0xaf, 0xaf, 0xf3, 0x1d, 0xb9, 0xa4, 0xda, 0x6f, 0x20, 0xcd, 0x3a, 0xae, 0x64, 0xc2, 0xdb, 0xee, 0xf5, 0xb8, 0x8d, 0x57, 0x0e}, | |
| {0x3c, 0xbb, 0x1c, 0x12, 0x5e, 0x17, 0xfd, 0x54, 0x90, 0x45, 0xa7, 0x7b, 0x61, 0x6c, 0x1d, 0xfe, 0xe6, 0xcc, 0x7f, 0xee, 0xcf, 0xef, 0x33, 0x35, 0x50, 0x62, 0x16, 0x70, 0x2f, 0x87, 0xc3, 0xc9}, | |
| {0x53, 0x4d, 0xa8, 0xe7, 0x1e, 0x98, 0x73, 0x8d, 0xd9, 0xa3, 0x54, 0xa5, 0x0e, 0x59, 0x2c, 0x25, 0x43, 0x6f, 0xaa, 0xa2, 0xf5, 0x21, 0x06, 0x3e, 0xc9, 0x82, 0x06, 0x94, 0x98, 0x72, 0x9d, 0xa7}, | |
| {0xef, 0x7e, 0xe9, 0x6b, 0xd3, 0xe5, 0xb7, 0x41, 0x4c, 0xc8, 0xd3, 0x07, 0x52, 0x9a, 0x5a, 0x8b, 0x4e, 0x1e, 0x75, 0xa4, 0x17, 0x78, 0xc8, 0x36, 0xcd, 0xf8, 0x2e, 0xd9, 0x57, 0xe3, 0xd7, 0x07}, | |
| {0x87, 0x16, 0xfb, 0xf9, 0xa5, 0xf8, 0xc4, 0x56, 0x2b, 0x48, 0x52, 0x8e, 0x2d, 0x30, 0x85, 0xb6, 0x4c, 0x56, 0xb5, 0xd1, 0x16, 0x9c, 0xcf, 0x32, 0x95, 0xad, 0x03, 0xe8, 0x05, 0x58, 0x06, 0x76}, | |
| {0x75, 0x03, 0x80, 0x28, 0xf2, 0xa7, 0x63, 0x22, 0x1a, 0x26, 0x9c, 0x68, 0xe0, 0x58, 0xfc, 0x73, 0xeb, 0x42, 0xf6, 0x86, 0x16, 0x24, 0x4b, 0xbc, 0x24, 0xf7, 0x02, 0xc8, 0x3d, 0x90, 0xe2, 0xb0}, | |
| {0xdf, 0x49, 0x0f, 0x15, 0x7b, 0x7d, 0xbf, 0xe0, 0xd4, 0xcf, 0x47, 0xc0, 0x80, 0x93, 0x4a, 0x61, 0xaa, 0x03, 0x07, 0x66, 0xb3, 0x38, 0x5d, 0xc8, 0xc9, 0x07, 0x61, 0xfb, 0x97, 0x10, 0x2f, 0xd8}, | |
| {0x77, 0x19, 0x40, 0x56, 0x41, 0xad, 0xbc, 0x59, 0xda, 0x1e, 0xc5, 0x37, 0x14, 0x63, 0x7b, 0xfb, 0x79, 0xe2, 0x7a, 0xb1, 0x55, 0x42, 0x99, 0x42, 0x56, 0xfe, 0x26, 0x9d, 0x0f, 0x7e, 0x80, 0xc6}, | |
| {0x50, 0xe7, 0x2a, 0x0e, 0x26, 0x44, 0x2f, 0xe2, 0x55, 0x2d, 0xc3, 0x93, 0x8a, 0xc5, 0x86, 0x58, 0x22, 0x8c, 0x0c, 0xbf, 0xb1, 0xd2, 0xca, 0x87, 0x2a, 0xe4, 0x35, 0x26, 0x6f, 0xcd, 0x05, 0x5e}, | |
| {0xe4, 0x80, 0x6f, 0xdb, 0x3d, 0x7d, 0xba, 0xde, 0x50, 0x3f, 0xea, 0x00, 0x3d, 0x46, 0x59, 0x64, 0xfd, 0x58, 0x1c, 0xa1, 0xb8, 0x7d, 0x5f, 0xac, 0x94, 0x37, 0x9e, 0xa0, 0xc0, 0x9c, 0x93, 0x8b}, | |
| {0x2c, 0xf3, 0xa9, 0xf6, 0x15, 0x25, 0x80, 0x70, 0x76, 0x99, 0x7d, 0xf1, 0xc3, 0x2f, 0xa3, 0x31, 0xff, 0x92, 0x35, 0x2e, 0x8d, 0x04, 0x13, 0x33, 0xd8, 0x0d, 0xdb, 0x4a, 0xf6, 0x8c, 0x03, 0x34}, | |
| {0xec, 0x12, 0x24, 0x9f, 0x35, 0xa4, 0x29, 0x8b, 0x9e, 0x4a, 0x95, 0xf8, 0x61, 0xaf, 0x61, 0xc5, 0x66, 0x55, 0x3e, 0x3f, 0x2a, 0x98, 0xea, 0x71, 0x16, 0x6b, 0x1c, 0xd9, 0xe4, 0x09, 0xd2, 0x8e}, | |
| }; | |
| unsigned int i; | |
| for (i = 0; i < sizeof(midstates)/sizeof(midstates[0]); i++) { | |
| unsigned char out[32]; | |
| secp256k1_sha256 hasher = midstates[i]; | |
| secp256k1_sha256_write(&hasher, (const unsigned char*)input, strlen(input)); | |
| secp256k1_sha256_finalize(&hasher, out); | |
| CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0); | |
| } | |
| } | |
| | |
| /* Tests for the equality of two sha256 structs. This function only produces a | |
| * correct result if an integer multiple of 64 many bytes have been written | |
| * into the hash functions. This function is used by some module tests. */ | |
| static void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) { | |
| /* Is buffer fully consumed? */ | |
| CHECK((sha1->bytes & 0x3F) == 0); | |
| | |
| CHECK(sha1->bytes == sha2->bytes); | |
| CHECK(secp256k1_memcmp_var(sha1->s, sha2->s, sizeof(sha1->s)) == 0); | |
| } | |
| /* Convenience function for using test_sha256_eq to verify the correctness of a | |
| * tagged hash midstate. This function is used by some module tests. */ | |
| static void test_sha256_tag_midstate(secp256k1_sha256 *sha_tagged, const unsigned char *tag, size_t taglen) { | |
| secp256k1_sha256 sha; | |
| secp256k1_sha256_initialize_tagged(&sha, tag, taglen); | |
| test_sha256_eq(&sha, sha_tagged); | |
| } | |
| | |
| static void run_hmac_sha256_tests(void) { | |
| static const char *keys[6] = { | |
| "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b", | |
| "\x4a\x65\x66\x65", | |
| "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa", | |
| "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", | |
| "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa", | |
| "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" | |
| }; | |
| static const char *inputs[6] = { | |
| "\x48\x69\x20\x54\x68\x65\x72\x65", | |
| "\x77\x68\x61\x74\x20\x64\x6f\x20\x79\x61\x20\x77\x61\x6e\x74\x20\x66\x6f\x72\x20\x6e\x6f\x74\x68\x69\x6e\x67\x3f", | |
| "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd", | |
| "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd", | |
| "\x54\x65\x73\x74\x20\x55\x73\x69\x6e\x67\x20\x4c\x61\x72\x67\x65\x72\x20\x54\x68\x61\x6e\x20\x42\x6c\x6f\x63\x6b\x2d\x53\x69\x7a\x65\x20\x4b\x65\x79\x20\x2d\x20\x48\x61\x73\x68\x20\x4b\x65\x79\x20\x46\x69\x72\x73\x74", | |
| "\x54\x68\x69\x73\x20\x69\x73\x20\x61\x20\x74\x65\x73\x74\x20\x75\x73\x69\x6e\x67\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x6b\x65\x79\x20\x61\x6e\x64\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x64\x61\x74\x61\x2e\x20\x54\x68\x65\x20\x6b\x65\x79\x20\x6e\x65\x65\x64\x73\x20\x74\x6f\x20\x62\x65\x20\x68\x61\x73\x68\x65\x64\x20\x62\x65\x66\x6f\x72\x65\x20\x62\x65\x69\x6e\x67\x20\x75\x73\x65\x64\x20\x62\x79\x20\x74\x68\x65\x20\x48\x4d\x41\x43\x20\x61\x6c\x67\x6f\x72\x69\x74\x68\x6d\x2e" | |
| }; | |
| static const unsigned char outputs[6][32] = { | |
| {0xb0, 0x34, 0x4c, 0x61, 0xd8, 0xdb, 0x38, 0x53, 0x5c, 0xa8, 0xaf, 0xce, 0xaf, 0x0b, 0xf1, 0x2b, 0x88, 0x1d, 0xc2, 0x00, 0xc9, 0x83, 0x3d, 0xa7, 0x26, 0xe9, 0x37, 0x6c, 0x2e, 0x32, 0xcf, 0xf7}, | |
| {0x5b, 0xdc, 0xc1, 0x46, 0xbf, 0x60, 0x75, 0x4e, 0x6a, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xc7, 0x5a, 0x00, 0x3f, 0x08, 0x9d, 0x27, 0x39, 0x83, 0x9d, 0xec, 0x58, 0xb9, 0x64, 0xec, 0x38, 0x43}, | |
| {0x77, 0x3e, 0xa9, 0x1e, 0x36, 0x80, 0x0e, 0x46, 0x85, 0x4d, 0xb8, 0xeb, 0xd0, 0x91, 0x81, 0xa7, 0x29, 0x59, 0x09, 0x8b, 0x3e, 0xf8, 0xc1, 0x22, 0xd9, 0x63, 0x55, 0x14, 0xce, 0xd5, 0x65, 0xfe}, | |
| {0x82, 0x55, 0x8a, 0x38, 0x9a, 0x44, 0x3c, 0x0e, 0xa4, 0xcc, 0x81, 0x98, 0x99, 0xf2, 0x08, 0x3a, 0x85, 0xf0, 0xfa, 0xa3, 0xe5, 0x78, 0xf8, 0x07, 0x7a, 0x2e, 0x3f, 0xf4, 0x67, 0x29, 0x66, 0x5b}, | |
| {0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54}, | |
| {0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2} | |
| }; | |
| int i; | |
| for (i = 0; i < 6; i++) { | |
| secp256k1_hmac_sha256 hasher; | |
| unsigned char out[32]; | |
| secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); | |
| secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); | |
| secp256k1_hmac_sha256_finalize(&hasher, out); | |
| CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0); | |
| if (strlen(inputs[i]) > 0) { | |
| int split = testrand_int(strlen(inputs[i])); | |
| secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); | |
| secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); | |
| secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); | |
| secp256k1_hmac_sha256_finalize(&hasher, out); | |
| CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0); | |
| } | |
| } | |
| } | |
| | |
| static void run_rfc6979_hmac_sha256_tests(void) { | |
| static const unsigned char key1[65] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x4b, 0xf5, 0x12, 0x2f, 0x34, 0x45, 0x54, 0xc5, 0x3b, 0xde, 0x2e, 0xbb, 0x8c, 0xd2, 0xb7, 0xe3, 0xd1, 0x60, 0x0a, 0xd6, 0x31, 0xc3, 0x85, 0xa5, 0xd7, 0xcc, 0xe2, 0x3c, 0x77, 0x85, 0x45, 0x9a, 0}; | |
| static const unsigned char out1[3][32] = { | |
| {0x4f, 0xe2, 0x95, 0x25, 0xb2, 0x08, 0x68, 0x09, 0x15, 0x9a, 0xcd, 0xf0, 0x50, 0x6e, 0xfb, 0x86, 0xb0, 0xec, 0x93, 0x2c, 0x7b, 0xa4, 0x42, 0x56, 0xab, 0x32, 0x1e, 0x42, 0x1e, 0x67, 0xe9, 0xfb}, | |
| {0x2b, 0xf0, 0xff, 0xf1, 0xd3, 0xc3, 0x78, 0xa2, 0x2d, 0xc5, 0xde, 0x1d, 0x85, 0x65, 0x22, 0x32, 0x5c, 0x65, 0xb5, 0x04, 0x49, 0x1a, 0x0c, 0xbd, 0x01, 0xcb, 0x8f, 0x3a, 0xa6, 0x7f, 0xfd, 0x4a}, | |
| {0xf5, 0x28, 0xb4, 0x10, 0xcb, 0x54, 0x1f, 0x77, 0x00, 0x0d, 0x7a, 0xfb, 0x6c, 0x5b, 0x53, 0xc5, 0xc4, 0x71, 0xea, 0xb4, 0x3e, 0x46, 0x6d, 0x9a, 0xc5, 0x19, 0x0c, 0x39, 0xc8, 0x2f, 0xd8, 0x2e} | |
| }; | |
| | |
| static const unsigned char key2[64] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55}; | |
| static const unsigned char out2[3][32] = { | |
| {0x9c, 0x23, 0x6c, 0x16, 0x5b, 0x82, 0xae, 0x0c, 0xd5, 0x90, 0x65, 0x9e, 0x10, 0x0b, 0x6b, 0xab, 0x30, 0x36, 0xe7, 0xba, 0x8b, 0x06, 0x74, 0x9b, 0xaf, 0x69, 0x81, 0xe1, 0x6f, 0x1a, 0x2b, 0x95}, | |
| {0xdf, 0x47, 0x10, 0x61, 0x62, 0x5b, 0xc0, 0xea, 0x14, 0xb6, 0x82, 0xfe, 0xee, 0x2c, 0x9c, 0x02, 0xf2, 0x35, 0xda, 0x04, 0x20, 0x4c, 0x1d, 0x62, 0xa1, 0x53, 0x6c, 0x6e, 0x17, 0xae, 0xd7, 0xa9}, | |
| {0x75, 0x97, 0x88, 0x7c, 0xbd, 0x76, 0x32, 0x1f, 0x32, 0xe3, 0x04, 0x40, 0x67, 0x9a, 0x22, 0xcf, 0x7f, 0x8d, 0x9d, 0x2e, 0xac, 0x39, 0x0e, 0x58, 0x1f, 0xea, 0x09, 0x1c, 0xe2, 0x02, 0xba, 0x94} | |
| }; | |
| | |
| secp256k1_rfc6979_hmac_sha256 rng; | |
| unsigned char out[32]; | |
| int i; | |
| | |
| secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 64); | |
| for (i = 0; i < 3; i++) { | |
| secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); | |
| CHECK(secp256k1_memcmp_var(out, out1[i], 32) == 0); | |
| } | |
| secp256k1_rfc6979_hmac_sha256_finalize(&rng); | |
| | |
| secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 65); | |
| for (i = 0; i < 3; i++) { | |
| secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); | |
| CHECK(secp256k1_memcmp_var(out, out1[i], 32) != 0); | |
| } | |
| secp256k1_rfc6979_hmac_sha256_finalize(&rng); | |
| | |
| secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 64); | |
| for (i = 0; i < 3; i++) { | |
| secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); | |
| CHECK(secp256k1_memcmp_var(out, out2[i], 32) == 0); | |
| } | |
| secp256k1_rfc6979_hmac_sha256_finalize(&rng); | |
| } | |
| | |
| static void run_tagged_sha256_tests(void) { | |
| unsigned char tag[32] = { 0 }; | |
| unsigned char msg[32] = { 0 }; | |
| unsigned char hash32[32]; | |
| unsigned char hash_expected[32] = { | |
| 0x04, 0x7A, 0x5E, 0x17, 0xB5, 0x86, 0x47, 0xC1, | |
| 0x3C, 0xC6, 0xEB, 0xC0, 0xAA, 0x58, 0x3B, 0x62, | |
| 0xFB, 0x16, 0x43, 0x32, 0x68, 0x77, 0x40, 0x6C, | |
| 0xE2, 0x76, 0x55, 0x9A, 0x3B, 0xDE, 0x55, 0xB3 | |
| }; | |
| | |
| /* API test */ | |
| CHECK(secp256k1_tagged_sha256(CTX, hash32, tag, sizeof(tag), msg, sizeof(msg)) == 1); | |
| CHECK_ILLEGAL(CTX, secp256k1_tagged_sha256(CTX, NULL, tag, sizeof(tag), msg, sizeof(msg))); | |
| CHECK_ILLEGAL(CTX, secp256k1_tagged_sha256(CTX, hash32, NULL, 0, msg, sizeof(msg))); | |
| CHECK_ILLEGAL(CTX, secp256k1_tagged_sha256(CTX, hash32, tag, sizeof(tag), NULL, 0)); | |
| | |
| /* Static test vector */ | |
| memcpy(tag, "tag", 3); | |
| memcpy(msg, "msg", 3); | |
| CHECK(secp256k1_tagged_sha256(CTX, hash32, tag, 3, msg, 3) == 1); | |
| CHECK(secp256k1_memcmp_var(hash32, hash_expected, sizeof(hash32)) == 0); | |
| } | |
| | |
| /***** MODINV TESTS *****/ | |
| | |
| /* Compute the modular inverse of (odd) x mod 2^64. */ | |
| static uint64_t modinv2p64(uint64_t x) { | |
| /* If w = 1/x mod 2^(2^L), then w*(2 - w*x) = 1/x mod 2^(2^(L+1)). See | |
| * Hacker's Delight second edition, Henry S. Warren, Jr., pages 245-247 for | |
| * why. Start with L=0, for which it is true for every odd x that | |
| * 1/x=1 mod 2. Iterating 6 times gives us 1/x mod 2^64. */ | |
| int l; | |
| uint64_t w = 1; | |
| CHECK(x & 1); | |
| for (l = 0; l < 6; ++l) w *= (2 - w*x); | |
| return w; | |
| } | |
| | |
| | |
| /* compute out = (a*b) mod m; if b=NULL, treat b=1; if m=NULL, treat m=infinity. | |
| * | |
| * Out is a 512-bit number (represented as 32 uint16_t's in LE order). The other | |
| * arguments are 256-bit numbers (represented as 16 uint16_t's in LE order). */ | |
| static void mulmod256(uint16_t* out, const uint16_t* a, const uint16_t* b, const uint16_t* m) { | |
| uint16_t mul[32]; | |
| uint64_t c = 0; | |
| int i, j; | |
| int m_bitlen = 0; | |
| int mul_bitlen = 0; | |
| | |
| if (b != NULL) { | |
| /* Compute the product of a and b, and put it in mul. */ | |
| for (i = 0; i < 32; ++i) { | |
| for (j = i <= 15 ? 0 : i - 15; j <= i && j <= 15; j++) { | |
| c += (uint64_t)a[j] * b[i - j]; | |
| } | |
| mul[i] = c & 0xFFFF; | |
| c >>= 16; | |
| } | |
| CHECK(c == 0); | |
| | |
| /* compute the highest set bit in mul */ | |
| for (i = 511; i >= 0; --i) { | |
| if ((mul[i >> 4] >> (i & 15)) & 1) { | |
| mul_bitlen = i; | |
| break; | |
| } | |
| } | |
| } else { | |
| /* if b==NULL, set mul=a. */ | |
| memcpy(mul, a, 32); | |
| memset(mul + 16, 0, 32); | |
| /* compute the highest set bit in mul */ | |
| for (i = 255; i >= 0; --i) { | |
| if ((mul[i >> 4] >> (i & 15)) & 1) { | |
| mul_bitlen = i; | |
| break; | |
| } | |
| } | |
| } | |
| | |
| if (m) { | |
| /* Compute the highest set bit in m. */ | |
| for (i = 255; i >= 0; --i) { | |
| if ((m[i >> 4] >> (i & 15)) & 1) { | |
| m_bitlen = i; | |
| break; | |
| } | |
| } | |
| | |
| /* Try do mul -= m<<i, for i going down to 0, whenever the result is not negative */ | |
| for (i = mul_bitlen - m_bitlen; i >= 0; --i) { | |
| uint16_t mul2[32]; | |
| int64_t cs; | |
| | |
| /* Compute mul2 = mul - m<<i. */ | |
| cs = 0; /* accumulator */ | |
| for (j = 0; j < 32; ++j) { /* j loops over the output limbs in mul2. */ | |
| /* Compute sub: the 16 bits in m that will be subtracted from mul2[j]. */ | |
| uint16_t sub = 0; | |
| int p; | |
| for (p = 0; p < 16; ++p) { /* p loops over the bit positions in mul2[j]. */ | |
| int bitpos = j * 16 - i + p; /* bitpos is the correspond bit position in m. */ | |
| if (bitpos >= 0 && bitpos < 256) { | |
| sub |= ((m[bitpos >> 4] >> (bitpos & 15)) & 1) << p; | |
| } | |
| } | |
| /* Add mul[j]-sub to accumulator, and shift bottom 16 bits out to mul2[j]. */ | |
| cs += mul[j]; | |
| cs -= sub; | |
| mul2[j] = (cs & 0xFFFF); | |
| cs >>= 16; | |
| } | |
| /* If remainder of subtraction is 0, set mul = mul2. */ | |
| if (cs == 0) { | |
| memcpy(mul, mul2, sizeof(mul)); | |
| } | |
| } | |
| /* Sanity check: test that all limbs higher than m's highest are zero */ | |
| for (i = (m_bitlen >> 4) + 1; i < 32; ++i) { | |
| CHECK(mul[i] == 0); | |
| } | |
| } | |
| memcpy(out, mul, 32); | |
| } | |
| | |
| /* Convert a 256-bit number represented as 16 uint16_t's to signed30 notation. */ | |
| static void uint16_to_signed30(secp256k1_modinv32_signed30* out, const uint16_t* in) { | |
| int i; | |
| memset(out->v, 0, sizeof(out->v)); | |
| for (i = 0; i < 256; ++i) { | |
| out->v[i / 30] |= (int32_t)(((in[i >> 4]) >> (i & 15)) & 1) << (i % 30); | |
| } | |
| } | |
| | |
| /* Convert a 256-bit number in signed30 notation to a representation as 16 uint16_t's. */ | |
| static void signed30_to_uint16(uint16_t* out, const secp256k1_modinv32_signed30* in) { | |
| int i; | |
| memset(out, 0, 32); | |
| for (i = 0; i < 256; ++i) { | |
| out[i >> 4] |= (((in->v[i / 30]) >> (i % 30)) & 1) << (i & 15); | |
| } | |
| } | |
| | |
| /* Randomly mutate the sign of limbs in signed30 representation, without changing the value. */ | |
| static void mutate_sign_signed30(secp256k1_modinv32_signed30* x) { | |
| int i; | |
| for (i = 0; i < 16; ++i) { | |
| int pos = testrand_bits(3); | |
| if (x->v[pos] > 0 && x->v[pos + 1] <= 0x3fffffff) { | |
| x->v[pos] -= 0x40000000; | |
| x->v[pos + 1] += 1; | |
| } else if (x->v[pos] < 0 && x->v[pos + 1] >= 0x3fffffff) { | |
| x->v[pos] += 0x40000000; | |
| x->v[pos + 1] -= 1; | |
| } | |
| } | |
| } | |
| | |
| /* Test secp256k1_modinv32{_var}, using inputs in 16-bit limb format, and returning inverse. */ | |
| static void test_modinv32_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod) { | |
| uint16_t tmp[16]; | |
| secp256k1_modinv32_signed30 x; | |
| secp256k1_modinv32_modinfo m; | |
| int i, vartime, nonzero; | |
| | |
| uint16_to_signed30(&x, in); | |
| nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4] | x.v[5] | x.v[6] | x.v[7] | x.v[8]) != 0; | |
| uint16_to_signed30(&m.modulus, mod); | |
| | |
| /* compute 1/modulus mod 2^30 */ | |
| m.modulus_inv30 = modinv2p64(m.modulus.v[0]) & 0x3fffffff; | |
| CHECK(((m.modulus_inv30 * m.modulus.v[0]) & 0x3fffffff) == 1); | |
| | |
| /* Test secp256k1_jacobi32_maybe_var. */ | |
| if (nonzero) { | |
| int jac; | |
| uint16_t sqr[16], negone[16]; | |
| mulmod256(sqr, in, in, mod); | |
| uint16_to_signed30(&x, sqr); | |
| /* Compute jacobi symbol of in^2, which must be 1 (or uncomputable). */ | |
| jac = secp256k1_jacobi32_maybe_var(&x, &m); | |
| CHECK(jac == 0 || jac == 1); | |
| /* Then compute the jacobi symbol of -(in^2). x and -x have opposite | |
| * jacobi symbols if and only if (mod % 4) == 3. */ | |
| negone[0] = mod[0] - 1; | |
| for (i = 1; i < 16; ++i) negone[i] = mod[i]; | |
| mulmod256(sqr, sqr, negone, mod); | |
| uint16_to_signed30(&x, sqr); | |
| jac = secp256k1_jacobi32_maybe_var(&x, &m); | |
| CHECK(jac == 0 || jac == 1 - (mod[0] & 2)); | |
| } | |
| | |
| uint16_to_signed30(&x, in); | |
| mutate_sign_signed30(&m.modulus); | |
| for (vartime = 0; vartime < 2; ++vartime) { | |
| /* compute inverse */ | |
| (vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m); | |
| | |
| /* produce output */ | |
| signed30_to_uint16(out, &x); | |
| | |
| /* check if the inverse times the input is 1 (mod m), unless x is 0. */ | |
| mulmod256(tmp, out, in, mod); | |
| CHECK(tmp[0] == nonzero); | |
| for (i = 1; i < 16; ++i) CHECK(tmp[i] == 0); | |
| | |
| /* invert again */ | |
| (vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m); | |
| | |
| /* check if the result is equal to the input */ | |
| signed30_to_uint16(tmp, &x); | |
| for (i = 0; i < 16; ++i) CHECK(tmp[i] == in[i]); | |
| } | |
| } | |
| | |
| #ifdef SECP256K1_WIDEMUL_INT128 | |
| /* Convert a 256-bit number represented as 16 uint16_t's to signed62 notation. */ | |
| static void uint16_to_signed62(secp256k1_modinv64_signed62* out, const uint16_t* in) { | |
| int i; | |
| memset(out->v, 0, sizeof(out->v)); | |
| for (i = 0; i < 256; ++i) { | |
| out->v[i / 62] |= (int64_t)(((in[i >> 4]) >> (i & 15)) & 1) << (i % 62); | |
| } | |
| } | |
| | |
| /* Convert a 256-bit number in signed62 notation to a representation as 16 uint16_t's. */ | |
| static void signed62_to_uint16(uint16_t* out, const secp256k1_modinv64_signed62* in) { | |
| int i; | |
| memset(out, 0, 32); | |
| for (i = 0; i < 256; ++i) { | |
| out[i >> 4] |= (((in->v[i / 62]) >> (i % 62)) & 1) << (i & 15); | |
| } | |
| } | |
| | |
| /* Randomly mutate the sign of limbs in signed62 representation, without changing the value. */ | |
| static void mutate_sign_signed62(secp256k1_modinv64_signed62* x) { | |
| static const int64_t M62 = (int64_t)(UINT64_MAX >> 2); | |
| int i; | |
| for (i = 0; i < 8; ++i) { | |
| int pos = testrand_bits(2); | |
| if (x->v[pos] > 0 && x->v[pos + 1] <= M62) { | |
| x->v[pos] -= (M62 + 1); | |
| x->v[pos + 1] += 1; | |
| } else if (x->v[pos] < 0 && x->v[pos + 1] >= -M62) { | |
| x->v[pos] += (M62 + 1); | |
| x->v[pos + 1] -= 1; | |
| } | |
| } | |
| } | |
| | |
| /* Test secp256k1_modinv64{_var}, using inputs in 16-bit limb format, and returning inverse. */ | |
| static void test_modinv64_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod) { | |
| static const int64_t M62 = (int64_t)(UINT64_MAX >> 2); | |
| uint16_t tmp[16]; | |
| secp256k1_modinv64_signed62 x; | |
| secp256k1_modinv64_modinfo m; | |
| int i, vartime, nonzero; | |
| | |
| uint16_to_signed62(&x, in); | |
| nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4]) != 0; | |
| uint16_to_signed62(&m.modulus, mod); | |
| | |
| /* compute 1/modulus mod 2^62 */ | |
| m.modulus_inv62 = modinv2p64(m.modulus.v[0]) & M62; | |
| CHECK(((m.modulus_inv62 * m.modulus.v[0]) & M62) == 1); | |
| | |
| /* Test secp256k1_jacobi64_maybe_var. */ | |
| if (nonzero) { | |
| int jac; | |
| uint16_t sqr[16], negone[16]; | |
| mulmod256(sqr, in, in, mod); | |
| uint16_to_signed62(&x, sqr); | |
| /* Compute jacobi symbol of in^2, which must be 1 (or uncomputable). */ | |
| jac = secp256k1_jacobi64_maybe_var(&x, &m); | |
| CHECK(jac == 0 || jac == 1); | |
| /* Then compute the jacobi symbol of -(in^2). x and -x have opposite | |
| * jacobi symbols if and only if (mod % 4) == 3. */ | |
| negone[0] = mod[0] - 1; | |
| for (i = 1; i < 16; ++i) negone[i] = mod[i]; | |
| mulmod256(sqr, sqr, negone, mod); | |
| uint16_to_signed62(&x, sqr); | |
| jac = secp256k1_jacobi64_maybe_var(&x, &m); | |
| CHECK(jac == 0 || jac == 1 - (mod[0] & 2)); | |
| } | |
| | |
| uint16_to_signed62(&x, in); | |
| mutate_sign_signed62(&m.modulus); | |
| for (vartime = 0; vartime < 2; ++vartime) { | |
| /* compute inverse */ | |
| (vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m); | |
| | |
| /* produce output */ | |
| signed62_to_uint16(out, &x); | |
| | |
| /* check if the inverse times the input is 1 (mod m), unless x is 0. */ | |
| mulmod256(tmp, out, in, mod); | |
| CHECK(tmp[0] == nonzero); | |
| for (i = 1; i < 16; ++i) CHECK(tmp[i] == 0); | |
| | |
| /* invert again */ | |
| (vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m); | |
| | |
| /* check if the result is equal to the input */ | |
| signed62_to_uint16(tmp, &x); | |
| for (i = 0; i < 16; ++i) CHECK(tmp[i] == in[i]); | |
| } | |
| } | |
| #endif | |
| | |
| /* test if a and b are coprime */ | |
| static int coprime(const uint16_t* a, const uint16_t* b) { | |
| uint16_t x[16], y[16], t[16]; | |
| int i; | |
| int iszero; | |
| memcpy(x, a, 32); | |
| memcpy(y, b, 32); | |
| | |
| /* simple gcd loop: while x!=0, (x,y)=(y%x,x) */ | |
| while (1) { | |
| iszero = 1; | |
| for (i = 0; i < 16; ++i) { | |
| if (x[i] != 0) { | |
| iszero = 0; | |
| break; | |
| } | |
| } | |
| if (iszero) break; | |
| mulmod256(t, y, NULL, x); | |
| memcpy(y, x, 32); | |
| memcpy(x, t, 32); | |
| } | |
| | |
| /* return whether y=1 */ | |
| if (y[0] != 1) return 0; | |
| for (i = 1; i < 16; ++i) { | |
| if (y[i] != 0) return 0; | |
| } | |
| return 1; | |
| } | |
| | |
| static void run_modinv_tests(void) { | |
| /* Fixed test cases. Each tuple is (input, modulus, output), each as 16x16 bits in LE order. */ | |
| static const uint16_t CASES[][3][16] = { | |
| /* Test cases triggering edge cases in divsteps */ | |
| | |
| /* Test case known to need 713 divsteps */ | |
| {{0x1513, 0x5389, 0x54e9, 0x2798, 0x1957, 0x66a0, 0x8057, 0x3477, | |
| 0x7784, 0x1052, 0x326a, 0x9331, 0x6506, 0xa95c, 0x91f3, 0xfb5e}, | |
| {0x2bdd, 0x8df4, 0xcc61, 0x481f, 0xdae5, 0x5ca7, 0xf43b, 0x7d54, | |
| 0x13d6, 0x469b, 0x2294, 0x20f4, 0xb2a4, 0xa2d1, 0x3ff1, 0xfd4b}, | |
| {0xffd8, 0xd9a0, 0x456e, 0x81bb, 0xbabd, 0x6cea, 0x6dbd, 0x73ab, | |
| 0xbb94, 0x3d3c, 0xdf08, 0x31c4, 0x3e32, 0xc179, 0x2486, 0xb86b}}, | |
| /* Test case known to need 589 divsteps, reaching delta=-140 and | |
| delta=141. */ | |
| {{0x3fb1, 0x903b, 0x4eb7, 0x4813, 0xd863, 0x26bf, 0xd89f, 0xa8a9, | |
| 0x02fe, 0x57c6, 0x554a, 0x4eab, 0x165e, 0x3d61, 0xee1e, 0x456c}, | |
| {0x9295, 0x823b, 0x5c1f, 0x5386, 0x48e0, 0x02ff, 0x4c2a, 0xa2da, | |
| 0xe58f, 0x967c, 0xc97e, 0x3f5a, 0x69fb, 0x52d9, 0x0a86, 0xb4a3}, | |
| {0x3d30, 0xb893, 0xa809, 0xa7a8, 0x26f5, 0x5b42, 0x55be, 0xf4d0, | |
| 0x12c2, 0x7e6a, 0xe41a, 0x90c7, 0xebfa, 0xf920, 0x304e, 0x1419}}, | |
| /* Test case known to need 650 divsteps, and doing 65 consecutive (f,g/2) steps. */ | |
| {{0x8583, 0x5058, 0xbeae, 0xeb69, 0x48bc, 0x52bb, 0x6a9d, 0xcc94, | |
| 0x2a21, 0x87d5, 0x5b0d, 0x42f6, 0x5b8a, 0x2214, 0xe9d6, 0xa040}, | |
| {0x7531, 0x27cb, 0x7e53, 0xb739, 0x6a5f, 0x83f5, 0xa45c, 0xcb1d, | |
| 0x8a87, 0x1c9c, 0x51d7, 0x851c, 0xb9d8, 0x1fbe, 0xc241, 0xd4a3}, | |
| {0xcdb4, 0x275c, 0x7d22, 0xa906, 0x0173, 0xc054, 0x7fdf, 0x5005, | |
| 0x7fb8, 0x9059, 0xdf51, 0x99df, 0x2654, 0x8f6e, 0x070f, 0xb347}}, | |
| /* example needing 713 divsteps; delta=-2..3 */ | |
| {{0xe2e9, 0xee91, 0x4345, 0xe5ad, 0xf3ec, 0x8f42, 0x0364, 0xd5c9, | |
| 0xff49, 0xbef5, 0x4544, 0x4c7c, 0xae4b, 0xfd9d, 0xb35b, 0xda9d}, | |
| {0x36e7, 0x8cca, 0x2ed0, 0x47b3, 0xaca4, 0xb374, 0x7d2a, 0x0772, | |
| 0x6bdb, 0xe0a7, 0x900b, 0xfe10, 0x788c, 0x6f22, 0xd909, 0xf298}, | |
| {0xd8c6, 0xba39, 0x13ed, 0x198c, 0x16c8, 0xb837, 0xa5f2, 0x9797, | |
| 0x0113, 0x882a, 0x15b5, 0x324c, 0xabee, 0xe465, 0x8170, 0x85ac}}, | |
| /* example needing 713 divsteps; delta=-2..3 */ | |
| {{0xd5b7, 0x2966, 0x040e, 0xf59a, 0x0387, 0xd96d, 0xbfbc, 0xd850, | |
| 0x2d96, 0x872a, 0xad81, 0xc03c, 0xbb39, 0xb7fa, 0xd904, 0xef78}, | |
| {0x6279, 0x4314, 0xfdd3, 0x1568, 0x0982, 0x4d13, 0x625f, 0x010c, | |
| 0x22b1, 0x0cc3, 0xf22d, 0x5710, 0x1109, 0x5751, 0x7714, 0xfcf2}, | |
| {0xdb13, 0x5817, 0x232e, 0xe456, 0xbbbc, 0x6fbe, 0x4572, 0xa358, | |
| 0xc76d, 0x928e, 0x0162, 0x5314, 0x8325, 0x5683, 0xe21b, 0xda88}}, | |
| /* example needing 713 divsteps; delta=-2..3 */ | |
| {{0xa06f, 0x71ee, 0x3bac, 0x9ebb, 0xdeaa, 0x09ed, 0x1cf7, 0x9ec9, | |
| 0x7158, 0x8b72, 0x5d53, 0x5479, 0x5c75, 0xbb66, 0x9125, 0xeccc}, | |
| {0x2941, 0xd46c, 0x3cd4, 0x4a9d, 0x5c4a, 0x256b, 0xbd6c, 0x9b8e, | |
| 0x8fe0, 0x8a14, 0xffe8, 0x2496, 0x618d, 0xa9d7, 0x5018, 0xfb29}, | |
| {0x437c, 0xbd60, 0x7590, 0x94bb, 0x0095, 0xd35e, 0xd4fe, 0xd6da, | |
| 0x0d4e, 0x5342, 0x4cd2, 0x169b, 0x661c, 0x1380, 0xed2d, 0x85c1}}, | |
| /* example reaching delta=-64..65; 661 divsteps */ | |
| {{0xfde4, 0x68d6, 0x6c48, 0x7f77, 0x1c78, 0x96de, 0x2fd9, 0xa6c2, | |
| 0xbbb5, 0xd319, 0x69cf, 0xd4b3, 0xa321, 0xcda0, 0x172e, 0xe530}, | |
| {0xd9e3, 0x0f60, 0x3d86, 0xeeab, 0x25ee, 0x9582, 0x2d50, 0xfe16, | |
| 0xd4e2, 0xe3ba, 0x94e2, 0x9833, 0x6c5e, 0x8982, 0x13b6, 0xe598}, | |
| {0xe675, 0xf55a, 0x10f6, 0xabde, 0x5113, 0xecaa, 0x61ae, 0xad9f, | |
| 0x0c27, 0xef33, 0x62e5, 0x211d, 0x08fa, 0xa78d, 0xc675, 0x8bae}}, | |
| /* example reaching delta=-64..65; 661 divsteps */ | |
| {{0x21bf, 0x52d5, 0x8fd4, 0xaa18, 0x156a, 0x7247, 0xebb8, 0x5717, | |
| 0x4eb5, 0x1421, 0xb58f, 0x3b0b, 0x5dff, 0xe533, 0xb369, 0xd28a}, | |
| {0x9f6b, 0xe463, 0x2563, 0xc74d, 0x6d81, 0x636a, 0x8fc8, 0x7a94, | |
| 0x9429, 0x1585, 0xf35e, 0x7ff5, 0xb64f, 0x9720, 0xba74, 0xe108}, | |
| {0xa5ab, 0xea7b, 0xfe5e, 0x8a85, 0x13be, 0x7934, 0xe8a0, 0xa187, | |
| 0x86b5, 0xe477, 0xb9a4, 0x75d7, 0x538f, 0xdd70, 0xc781, 0xb67d}}, | |
| /* example reaching delta=-64..65; 661 divsteps */ | |
| {{0xa41a, 0x3e8d, 0xf1f5, 0x9493, 0x868c, 0x5103, 0x2725, 0x3ceb, | |
| 0x6032, 0x3624, 0xdc6b, 0x9120, 0xbf4c, 0x8821, 0x91ad, 0xb31a}, | |
| {0x5c0b, 0xdda5, 0x20f8, 0x32a1, 0xaf73, 0x6ec5, 0x4779, 0x43d6, | |
| 0xd454, 0x9573, 0xbf84, 0x5a58, 0xe04e, 0x307e, 0xd1d5, 0xe230}, | |
| {0xda15, 0xbcd6, 0x7180, 0xabd3, 0x04e6, 0x6986, 0xc0d7, 0x90bb, | |
| 0x3a4d, 0x7c95, 0xaaab, 0x9ab3, 0xda34, 0xa7f6, 0x9636, 0x6273}}, | |
| /* example doing 123 consecutive (f,g/2) steps; 615 divsteps */ | |
| {{0xb4d6, 0xb38f, 0x00aa, 0xebda, 0xd4c2, 0x70b8, 0x9dad, 0x58ee, | |
| 0x68f8, 0x48d3, 0xb5ff, 0xf422, 0x9e46, 0x2437, 0x18d0, 0xd9cc}, | |
| {0x5c83, 0xfed7, 0x97f5, 0x3f07, 0xcaad, 0x95b1, 0xb4a4, 0xb005, | |
| 0x23af, 0xdd27, 0x6c0d, 0x932c, 0xe2b2, 0xe3ae, 0xfb96, 0xdf67}, | |
| {0x3105, 0x0127, 0xfd48, 0x039b, 0x35f1, 0xbc6f, 0x6c0a, 0xb572, | |
| 0xe4df, 0xebad, 0x8edc, 0xb89d, 0x9555, 0x4c26, 0x1fef, 0x997c}}, | |
| /* example doing 123 consecutive (f,g/2) steps; 614 divsteps */ | |
| {{0x5138, 0xd474, 0x385f, 0xc964, 0x00f2, 0x6df7, 0x862d, 0xb185, | |
| 0xb264, 0xe9e1, 0x466c, 0xf39e, 0xafaf, 0x5f41, 0x47e2, 0xc89d}, | |
| {0x8607, 0x9c81, 0x46a2, 0x7dcc, 0xcb0c, 0x9325, 0xe149, 0x2bde, | |
| 0x6632, 0x2869, 0xa261, 0xb163, 0xccee, 0x22ae, 0x91e0, 0xcfd5}, | |
| {0x831c, 0xda22, 0xb080, 0xba7a, 0x26e2, 0x54b0, 0x073b, 0x5ea0, | |
| 0xed4b, 0xcb3d, 0xbba1, 0xbec8, 0xf2ad, 0xae0d, 0x349b, 0x17d1}}, | |
| /* example doing 123 consecutive (f,g/2) steps; 614 divsteps */ | |
| {{0xe9a5, 0xb4ad, 0xd995, 0x9953, 0xcdff, 0x50d7, 0xf715, 0x9dc7, | |
| 0x3e28, 0x15a9, 0x95a3, 0x8554, 0x5b5e, 0xad1d, 0x6d57, 0x3d50}, | |
| {0x3ad9, 0xbd60, 0x5cc7, 0x6b91, 0xadeb, 0x71f6, 0x7cc4, 0xa58a, | |
| 0x2cce, 0xf17c, 0x38c9, 0x97ed, 0x65fb, 0x3fa6, 0xa6bc, 0xeb24}, | |
| {0xf96c, 0x1963, 0x8151, 0xa0cc, 0x299b, 0xf277, 0x001a, 0x16bb, | |
| 0xfd2e, 0x532d, 0x0410, 0xe117, 0x6b00, 0x44ec, 0xca6a, 0x1745}}, | |
| /* example doing 446 (f,g/2) steps; 523 divsteps */ | |
| {{0x3758, 0xa56c, 0xe41e, 0x4e47, 0x0975, 0xa82b, 0x107c, 0x89cf, | |
| 0x2093, 0x5a0c, 0xda37, 0xe007, 0x6074, 0x4f68, 0x2f5a, 0xbb8a}, | |
| {0x4beb, 0xa40f, 0x2c42, 0xd9d6, 0x97e8, 0xca7c, 0xd395, 0x894f, | |
| 0x1f50, 0x8067, 0xa233, 0xb850, 0x1746, 0x1706, 0xbcda, 0xdf32}, | |
| {0x762a, 0xceda, 0x4c45, 0x1ca0, 0x8c37, 0xd8c5, 0xef57, 0x7a2c, | |
| 0x6e98, 0xe38a, 0xc50e, 0x2ca9, 0xcb85, 0x24d5, 0xc29c, 0x61f6}}, | |
| /* example doing 446 (f,g/2) steps; 523 divsteps */ | |
| {{0x6f38, 0x74ad, 0x7332, 0x4073, 0x6521, 0xb876, 0xa370, 0xa6bd, | |
| 0xcea5, 0xbd06, 0x969f, 0x77c6, 0x1e69, 0x7c49, 0x7d51, 0xb6e7}, | |
| {0x3f27, 0x4be4, 0xd81e, 0x1396, 0xb21f, 0x92aa, 0x6dc3, 0x6283, | |
| 0x6ada, 0x3ca2, 0xc1e5, 0x8b9b, 0xd705, 0x5598, 0x8ba1, 0xe087}, | |
| {0x6a22, 0xe834, 0xbc8d, 0xcee9, 0x42fc, 0xfc77, 0x9c45, 0x1ca8, | |
| 0xeb66, 0xed74, 0xaaf9, 0xe75f, 0xfe77, 0x46d2, 0x179b, 0xbf3e}}, | |
| /* example doing 336 (f,(f+g)/2) steps; 693 divsteps */ | |
| {{0x7ea7, 0x444e, 0x84ea, 0xc447, 0x7c1f, 0xab97, 0x3de6, 0x5878, | |
| 0x4e8b, 0xc017, 0x03e0, 0xdc40, 0xbbd0, 0x74ce, 0x0169, 0x7ab5}, | |
| {0x4023, 0x154f, 0xfbe4, 0x8195, 0xfda0, 0xef54, 0x9e9a, 0xc703, | |
| 0x2803, 0xf760, 0x6302, 0xed5b, 0x7157, 0x6456, 0xdd7d, 0xf14b}, | |
| {0xb6fb, 0xe3b3, 0x0733, 0xa77e, 0x44c5, 0x3003, 0xc937, 0xdd4d, | |
| 0x5355, 0x14e9, 0x184e, 0xcefe, 0xe6b5, 0xf2e0, 0x0a28, 0x5b74}}, | |
| /* example doing 336 (f,(f+g)/2) steps; 687 divsteps */ | |
| {{0xa893, 0xb5f4, 0x1ede, 0xa316, 0x242c, 0xbdcc, 0xb017, 0x0836, | |
| 0x3a37, 0x27fb, 0xfb85, 0x251e, 0xa189, 0xb15d, 0xa4b8, 0xc24c}, | |
| {0xb0b7, 0x57ba, 0xbb6d, 0x9177, 0xc896, 0xc7f2, 0x43b4, 0x85a6, | |
| 0xe6c4, 0xe50e, 0x3109, 0x7ca5, 0xd73d, 0x13ff, 0x0c3d, 0xcd62}, | |
| {0x48ca, 0xdb34, 0xe347, 0x2cef, 0x4466, 0x10fb, 0x7ee1, 0x6344, | |
| 0x4308, 0x966d, 0xd4d1, 0xb099, 0x994f, 0xd025, 0x2187, 0x5866}}, | |
| /* example doing 267 (g,(g-f)/2) steps; 678 divsteps */ | |
| {{0x0775, 0x1754, 0x01f6, 0xdf37, 0xc0be, 0x8197, 0x072f, 0x6cf5, | |
| 0x8b36, 0x8069, 0x5590, 0xb92d, 0x6084, 0x47a4, 0x23fe, 0xddd5}, | |
| {0x8e1b, 0xda37, 0x27d9, 0x312e, 0x3a2f, 0xef6d, 0xd9eb, 0x8153, | |
| 0xdcba, 0x9fa3, 0x9f80, 0xead5, 0x134d, 0x2ebb, 0x5ec0, 0xe032}, | |
| {0x1cb6, 0x5a61, 0x1bed, 0x77d6, 0xd5d1, 0x7498, 0xef33, 0x2dd2, | |
| 0x1089, 0xedbd, 0x6958, 0x16ae, 0x336c, 0x45e6, 0x4361, 0xbadc}}, | |
| /* example doing 267 (g,(g-f)/2) steps; 676 divsteps */ | |
| {{0x0207, 0xf948, 0xc430, 0xf36b, 0xf0a7, 0x5d36, 0x751f, 0x132c, | |
| 0x6f25, 0xa630, 0xca1f, 0xc967, 0xaf9c, 0x34e7, 0xa38f, 0xbe9f}, | |
| {0x5fb9, 0x7321, 0x6561, 0x5fed, 0x54ec, 0x9c3a, 0xee0e, 0x6717, | |
| 0x49af, 0xb896, 0xf4f5, 0x451c, 0x722a, 0xf116, 0x64a9, 0xcf0b}, | |
| {0xf4d7, 0xdb47, 0xfef2, 0x4806, 0x4cb8, 0x18c7, 0xd9a7, 0x4951, | |
| 0x14d8, 0x5c3a, 0xd22d, 0xd7b2, 0x750c, 0x3de7, 0x8b4a, 0x19aa}}, | |
| | |
| /* Test cases triggering edge cases in divsteps variant starting with delta=1/2 */ | |
| | |
| /* example needing 590 divsteps; delta=-5/2..7/2 */ | |
| {{0x9118, 0xb640, 0x53d7, 0x30ab, 0x2a23, 0xd907, 0x9323, 0x5b3a, | |
| 0xb6d4, 0x538a, 0x7637, 0xfe97, 0xfd05, 0x3cc0, 0x453a, 0xfb7e}, | |
| {0x6983, 0x4f75, 0x4ad1, 0x48ad, 0xb2d9, 0x521d, 0x3dbc, 0x9cc0, | |
| 0x4b60, 0x0ac6, 0xd3be, 0x0fb6, 0xd305, 0x3895, 0x2da5, 0xfdf8}, | |
| {0xcec1, 0x33ac, 0xa801, 0x8194, 0xe36c, 0x65ef, 0x103b, 0xca54, | |
| 0xfa9b, 0xb41d, 0x9b52, 0xb6f7, 0xa611, 0x84aa, 0x3493, 0xbf54}}, | |
| /* example needing 590 divsteps; delta=-3/2..5/2 */ | |
| {{0xb5f2, 0x42d0, 0x35e8, 0x8ca0, 0x4b62, 0x6e1d, 0xbdf3, 0x890e, | |
| 0x8c82, 0x23d8, 0xc79a, 0xc8e8, 0x789e, 0x353d, 0x9766, 0xea9d}, | |
| {0x6fa1, 0xacba, 0x4b7a, 0x5de1, 0x95d0, 0xc845, 0xebbf, 0x6f5a, | |
| 0x30cf, 0x52db, 0x69b7, 0xe278, 0x4b15, 0x8411, 0x2ab2, 0xf3e7}, | |
| {0xf12c, 0x9d6d, 0x95fa, 0x1878, 0x9f13, 0x4fb5, 0x3c8b, 0xa451, | |
| 0x7182, 0xc4b6, 0x7e2a, 0x7bb7, 0x6e0e, 0x5b68, 0xde55, 0x9927}}, | |
| /* example needing 590 divsteps; delta=-3/2..5/2 */ | |
| {{0x229c, 0x4ef8, 0x1e93, 0xe5dc, 0xcde5, 0x6d62, 0x263b, 0xad11, | |
| 0xced0, 0x88ff, 0xae8e, 0x3183, 0x11d2, 0xa50b, 0x350d, 0xeb40}, | |
| {0x3157, 0xe2ea, 0x8a02, 0x0aa3, 0x5ae1, 0xb26c, 0xea27, 0x6805, | |
| 0x87e2, 0x9461, 0x37c1, 0x2f8d, 0x85d2, 0x77a8, 0xf805, 0xeec9}, | |
| {0x6f4e, 0x2748, 0xf7e5, 0xd8d3, 0xabe2, 0x7270, 0xc4e0, 0xedc7, | |
| 0xf196, 0x78ca, 0x9139, 0xd8af, 0x72c6, 0xaf2f, 0x85d2, 0x6cd3}}, | |
| /* example needing 590 divsteps; delta=-5/2..7/2 */ | |
| {{0xdce8, 0xf1fe, 0x6708, 0x021e, 0xf1ca, 0xd609, 0x5443, 0x85ce, | |
| 0x7a05, 0x8f9c, 0x90c3, 0x52e7, 0x8e1d, 0x97b8, 0xc0bf, 0xf2a1}, | |
| {0xbd3d, 0xed11, 0x1625, 0xb4c5, 0x844c, 0xa413, 0x2569, 0xb9ba, | |
| 0xcd35, 0xff84, 0xcd6e, 0x7f0b, 0x7d5d, 0x10df, 0x3efe, 0xfbe5}, | |
| {0xa9dd, 0xafef, 0xb1b7, 0x4c8d, 0x50e4, 0xafbf, 0x2d5a, 0xb27c, | |
| 0x0653, 0x66b6, 0x5d36, 0x4694, 0x7e35, 0xc47c, 0x857f, 0x32c5}}, | |
| /* example needing 590 divsteps; delta=-3/2..5/2 */ | |
| {{0x7902, 0xc9f8, 0x926b, 0xaaeb, 0x90f8, 0x1c89, 0xcce3, 0x96b7, | |
| 0x28b2, 0x87a2, 0x136d, 0x695a, 0xa8df, 0x9061, 0x9e31, 0xee82}, | |
| {0xd3a9, 0x3c02, 0x818c, 0x6b81, 0x34b3, 0xebbb, 0xe2c8, 0x7712, | |
| 0xbfd6, 0x8248, 0xa6f4, 0xba6f, 0x03bb, 0xfb54, 0x7575, 0xfe89}, | |
| {0x8246, 0x0d63, 0x478e, 0xf946, 0xf393, 0x0451, 0x08c2, 0x5919, | |
| 0x5fd6, 0x4c61, 0xbeb7, 0x9a15, 0x30e1, 0x55fc, 0x6a01, 0x3724}}, | |
| /* example reaching delta=-127/2..129/2; 571 divsteps */ | |
| {{0x3eff, 0x926a, 0x77f5, 0x1fff, 0x1a5b, 0xf3ef, 0xf64b, 0x8681, | |
| 0xf800, 0xf9bc, 0x761d, 0xe268, 0x62b0, 0xa032, 0xba9c, 0xbe56}, | |
| {0xb8f9, 0x00e7, 0x47b7, 0xdffc, 0xfd9d, 0x5abb, 0xa19b, 0x1868, | |
| 0x31fd, 0x3b29, 0x3674, 0x5449, 0xf54d, 0x1d19, 0x6ac7, 0xff6f}, | |
| {0xf1d7, 0x3551, 0x5682, 0x9adf, 0xe8aa, 0x19a5, 0x8340, 0x71db, | |
| 0xb7ab, 0x4cfd, 0xf661, 0x632c, 0xc27e, 0xd3c6, 0xdf42, 0xd306}}, | |
| /* example reaching delta=-127/2..129/2; 571 divsteps */ | |
| {{0x0000, 0x0000, 0x0000, 0x0000, 0x3aff, 0x2ed7, 0xf2e0, 0xabc7, | |
| 0x8aee, 0x166e, 0x7ed0, 0x9ac7, 0x714a, 0xb9c5, 0x4d58, 0xad6c}, | |
| {0x9cf9, 0x47e2, 0xa421, 0xb277, 0xffc2, 0x2747, 0x6486, 0x94c1, | |
| 0x1d99, 0xd49b, 0x1096, 0x991a, 0xe986, 0xae02, 0xe89b, 0xea36}, | |
| {0x1fb4, 0x98d8, 0x19b7, 0x80e9, 0xcdac, 0xaa5a, 0xf1e6, 0x0074, | |
| 0xe393, 0xed8b, 0x8d5c, 0xe17d, 0x81b3, 0xc16d, 0x54d3, 0x9be3}}, | |
| /* example reaching delta=-127/2..129/2; 571 divsteps */ | |
| {{0xd047, 0x7e36, 0x3157, 0x7ab6, 0xb4d9, 0x8dae, 0x7534, 0x4f5d, | |
| 0x489e, 0xa8ab, 0x8a3d, 0xd52c, 0x62af, 0xa032, 0xba9c, 0xbe56}, | |
| {0xb1f1, 0x737f, 0x5964, 0x5afb, 0x3712, 0x8ef9, 0x19f7, 0x9669, | |
| 0x664d, 0x03ad, 0xc352, 0xf7a5, 0xf545, 0x1d19, 0x6ac7, 0xff6f}, | |
| {0xa834, 0x5256, 0x27bc, 0x33bd, 0xba11, 0x5a7b, 0x791e, 0xe6c0, | |
| 0x9ac4, 0x9370, 0x1130, 0x28b4, 0x2b2e, 0x231b, 0x082a, 0x796e}}, | |
| /* example doing 123 consecutive (f,g/2) steps; 554 divsteps */ | |
| {{0x6ab1, 0x6ea0, 0x1a99, 0xe0c2, 0xdd45, 0x645d, 0x8dbc, 0x466a, | |
| 0xfa64, 0x4289, 0xd3f7, 0xfc8f, 0x2894, 0xe3c5, 0xa008, 0xcc14}, | |
| {0xc75f, 0xc083, 0x4cc2, 0x64f2, 0x2aff, 0x4c12, 0x8461, 0xc4ae, | |
| 0xbbfa, 0xb336, 0xe4b2, 0x3ac5, 0x2c22, 0xf56c, 0x5381, 0xe943}, | |
| {0xcd80, 0x760d, 0x4395, 0xb3a6, 0xd497, 0xf583, 0x82bd, 0x1daa, | |
| 0xbe92, 0x2613, 0xfdfb, 0x869b, 0x0425, 0xa333, 0x7056, 0xc9c5}}, | |
| /* example doing 123 consecutive (f,g/2) steps; 554 divsteps */ | |
| {{0x71d4, 0x64df, 0xec4f, 0x74d8, 0x7e0c, 0x40d3, 0x7073, 0x4cc8, | |
| 0x2a2a, 0xb1ff, 0x8518, 0x6513, 0xb0ea, 0x640a, 0x62d9, 0xd5f4}, | |
| {0xdc75, 0xd937, 0x3b13, 0x1d36, 0xdf83, 0xd034, 0x1c1c, 0x4332, | |
| 0x4cc3, 0xeeec, 0x7d94, 0x6771, 0x3384, 0x74b0, 0x947d, 0xf2c4}, | |
| {0x0a82, 0x37a4, 0x12d5, 0xec97, 0x972c, 0xe6bf, 0xc348, 0xa0a9, | |
| 0xc50c, 0xdc7c, 0xae30, 0x19d1, 0x0fca, 0x35e1, 0xd6f6, 0x81ee}}, | |
| /* example doing 123 consecutive (f,g/2) steps; 554 divsteps */ | |
| {{0xa6b1, 0xabc5, 0x5bbc, 0x7f65, 0xdd32, 0xaa73, 0xf5a3, 0x1982, | |
| 0xced4, 0xe949, 0x0fd6, 0x2bc4, 0x2bd7, 0xe3c5, 0xa008, 0xcc14}, | |
| {0x4b5f, 0x8f96, 0xa375, 0xfbcf, 0x1c7d, 0xf1ec, 0x03f5, 0xb35d, | |
| 0xb999, 0xdb1f, 0xc9a1, 0xb4c7, 0x1dd5, 0xf56c, 0x5381, 0xe943}, | |
| {0xaa3d, 0x38b9, 0xf17d, 0xeed9, 0x9988, 0x69ee, 0xeb88, 0x1495, | |
| 0x203f, 0x18c8, 0x82b7, 0xdcb2, 0x34a7, 0x6b00, 0x6998, 0x589a}}, | |
| /* example doing 453 (f,g/2) steps; 514 divsteps */ | |
| {{0xa478, 0xe60d, 0x3244, 0x60e6, 0xada3, 0xfe50, 0xb6b1, 0x2eae, | |
| 0xd0ef, 0xa7b1, 0xef63, 0x05c0, 0xe213, 0x443e, 0x4427, 0x2448}, | |
| {0x258f, 0xf9ef, 0xe02b, 0x92dd, 0xd7f3, 0x252b, 0xa503, 0x9089, | |
| 0xedff, 0x96c1, 0xfe3a, 0x3a39, 0x198a, 0x981d, 0x0627, 0xedb7}, | |
| {0x595a, 0x45be, 0x8fb0, 0x2265, 0xc210, 0x02b8, 0xdce9, 0xe241, | |
| 0xcab6, 0xbf0d, 0x0049, 0x8d9a, 0x2f51, 0xae54, 0x5785, 0xb411}}, | |
| /* example doing 453 (f,g/2) steps; 514 divsteps */ | |
| {{0x48f0, 0x7db3, 0xdafe, 0x1c92, 0x5912, 0xe11a, 0xab52, 0xede1, | |
| 0x3182, 0x8980, 0x5d2b, 0x9b5b, 0x8718, 0xda27, 0x1683, 0x1de2}, | |
| {0x168f, 0x6f36, 0xce7a, 0xf435, 0x19d4, 0xda5e, 0x2351, 0x9af5, | |
| 0xb003, 0x0ef5, 0x3b4c, 0xecec, 0xa9f0, 0x78e1, 0xdfef, 0xe823}, | |
| {0x5f55, 0xfdcc, 0xb233, 0x2914, 0x84f0, 0x97d1, 0x9cf4, 0x2159, | |
| 0xbf56, 0xb79c, 0x17a3, 0x7cef, 0xd5de, 0x34f0, 0x5311, 0x4c54}}, | |
| /* example doing 510 (f,(f+g)/2) steps; 512 divsteps */ | |
| {{0x2789, 0x2e04, 0x6e0e, 0xb6cd, 0xe4de, 0x4dbf, 0x228d, 0x7877, | |
| 0xc335, 0x806b, 0x38cd, 0x8049, 0xa73b, 0xcfa2, 0x82f7, 0x9e19}, | |
| {0xc08d, 0xb99d, 0xb8f3, 0x663d, 0xbbb3, 0x1284, 0x1485, 0x1d49, | |
| 0xc98f, 0x9e78, 0x1588, 0x11e3, 0xd91a, 0xa2c7, 0xfff1, 0xc7b9}, | |
| {0x1e1f, 0x411d, 0x7c49, 0x0d03, 0xe789, 0x2f8e, 0x5d55, 0xa95e, | |
| 0x826e, 0x8de5, 0x52a0, 0x1abc, 0x4cd7, 0xd13a, 0x4395, 0x63e1}}, | |
| /* example doing 510 (f,(f+g)/2) steps; 512 divsteps */ | |
| {{0xd5a1, 0xf786, 0x555c, 0xb14b, 0x44ae, 0x535f, 0x4a49, 0xffc3, | |
| 0xf497, 0x70d1, 0x57c8, 0xa933, 0xc85a, 0x1910, 0x75bf, 0x960b}, | |
| {0xfe53, 0x5058, 0x496d, 0xfdff, 0x6fb8, 0x4100, 0x92bd, 0xe0c4, | |
| 0xda89, 0xe0a4, 0x841b, 0x43d4, 0xa388, 0x957f, 0x99ca, 0x9abf}, | |
| {0xe530, 0x05bc, 0xfeec, 0xfc7e, 0xbcd3, 0x1239, 0x54cb, 0x7042, | |
| 0xbccb, 0x139e, 0x9076, 0x0203, 0x6068, 0x90c7, 0x1ddf, 0x488d}}, | |
| /* example doing 228 (g,(g-f)/2) steps; 538 divsteps */ | |
| {{0x9488, 0xe54b, 0x0e43, 0x81d2, 0x06e7, 0x4b66, 0x36d0, 0x53d6, | |
| 0x2b68, 0x22ec, 0x3fa9, 0xc1a7, 0x9ad2, 0xa596, 0xb3ac, 0xdf42}, | |
| {0xe31f, 0x0b28, 0x5f3b, 0xc1ff, 0x344c, 0xbf5f, 0xd2ec, 0x2936, | |
| 0x9995, 0xdeb2, 0xae6c, 0x2852, 0xa2c6, 0xb306, 0x8120, 0xe305}, | |
| {0xa56e, 0xfb98, 0x1537, 0x4d85, 0x619e, 0x866c, 0x3cd4, 0x779a, | |
| 0xdd66, 0xa80d, 0xdc2f, 0xcae4, 0xc74c, 0x5175, 0xa65d, 0x605e}}, | |
| /* example doing 228 (g,(g-f)/2) steps; 537 divsteps */ | |
| {{0x8cd5, 0x376d, 0xd01b, 0x7176, 0x19ef, 0xcf09, 0x8403, 0x5e52, | |
| 0x83c1, 0x44de, 0xb91e, 0xb33d, 0xe15c, 0x51e7, 0xbad8, 0x6359}, | |
| {0x3b75, 0xf812, 0x5f9e, 0xa04e, 0x92d3, 0x226e, 0x540e, 0x7c9a, | |
| 0x31c6, 0x46d2, 0x0b7b, 0xdb4a, 0xe662, 0x4950, 0x0265, 0xf76f}, | |
| {0x09ed, 0x692f, 0xe8f1, 0x3482, 0xab54, 0x36b4, 0x8442, 0x6ae9, | |
| 0x4329, 0x6505, 0x183b, 0x1c1d, 0x482d, 0x7d63, 0xb44f, 0xcc09}}, | |
| | |
| /* Test cases with the group order as modulus. */ | |
| | |
| /* Test case with the group order as modulus, needing 635 divsteps. */ | |
| {{0x95ed, 0x6c01, 0xd113, 0x5ff1, 0xd7d0, 0x29cc, 0x5817, 0x6120, | |
| 0xca8e, 0xaad1, 0x25ae, 0x8e84, 0x9af6, 0x30bf, 0xf0ed, 0x1686}, | |
| {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x1631, 0xbf4a, 0x286a, 0x2716, 0x469f, 0x2ac8, 0x1312, 0xe9bc, | |
| 0x04f4, 0x304b, 0x9931, 0x113b, 0xd932, 0xc8f4, 0x0d0d, 0x01a1}}, | |
| /* example with group size as modulus needing 631 divsteps */ | |
| {{0x85ed, 0xc284, 0x9608, 0x3c56, 0x19b6, 0xbb5b, 0x2850, 0xdab7, | |
| 0xa7f5, 0xe9ab, 0x06a4, 0x5bbb, 0x1135, 0xa186, 0xc424, 0xc68b}, | |
| {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x8479, 0x450a, 0x8fa3, 0xde05, 0xb2f5, 0x7793, 0x7269, 0xbabb, | |
| 0xc3b3, 0xd49b, 0x3377, 0x03c6, 0xe694, 0xc760, 0xd3cb, 0x2811}}, | |
| /* example with group size as modulus needing 565 divsteps starting at delta=1/2 */ | |
| {{0x8432, 0x5ceb, 0xa847, 0x6f1e, 0x51dd, 0x535a, 0x6ddc, 0x70ce, | |
| 0x6e70, 0xc1f6, 0x18f2, 0x2a7e, 0xc8e7, 0x39f8, 0x7e96, 0xebbf}, | |
| {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x257e, 0x449f, 0x689f, 0x89aa, 0x3989, 0xb661, 0x376c, 0x1e32, | |
| 0x654c, 0xee2e, 0xf4e2, 0x33c8, 0x3f2f, 0x9716, 0x6046, 0xcaa3}}, | |
| /* Test case with the group size as modulus, needing 981 divsteps with | |
| broken eta handling. */ | |
| {{0xfeb9, 0xb877, 0xee41, 0x7fa3, 0x87da, 0x94c4, 0x9d04, 0xc5ae, | |
| 0x5708, 0x0994, 0xfc79, 0x0916, 0xbf32, 0x3ad8, 0xe11c, 0x5ca2}, | |
| {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x0f12, 0x075e, 0xce1c, 0x6f92, 0xc80f, 0xca92, 0x9a04, 0x6126, | |
| 0x4b6c, 0x57d6, 0xca31, 0x97f3, 0x1f99, 0xf4fd, 0xda4d, 0x42ce}}, | |
| /* Test case with the group size as modulus, input = 0. */ | |
| {{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, | |
| {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, | |
| /* Test case with the group size as modulus, input = 1. */ | |
| {{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, | |
| {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, | |
| /* Test case with the group size as modulus, input = 2. */ | |
| {{0x0002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, | |
| {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x20a1, 0x681b, 0x2f46, 0xdfe9, 0x501d, 0x57a4, 0x6e73, 0x5d57, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x7fff}}, | |
| /* Test case with the group size as modulus, input = group - 1. */ | |
| {{0x4140, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x4140, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, | |
| 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}}, | |
| | |
| /* Test cases with the field size as modulus. */ | |
| | |
| /* Test case with the field size as modulus, needing 637 divsteps. */ | |
| {{0x9ec3, 0x1919, 0xca84, 0x7c11, 0xf996, 0x06f3, 0x5408, 0x6688, | |
| 0x1320, 0xdb8a, 0x632a, 0x0dcb, 0x8a84, 0x6bee, 0x9c95, 0xe34e}, | |
| {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x18e5, 0x19b6, 0xdf92, 0x1aaa, 0x09fb, 0x8a3f, 0x52b0, 0x8701, | |
| 0xac0c, 0x2582, 0xda44, 0x9bcc, 0x6828, 0x1c53, 0xbd8f, 0xbd2c}}, | |
| /* example with field size as modulus needing 637 divsteps */ | |
| {{0xaec3, 0xa7cf, 0x2f2d, 0x0693, 0x5ad5, 0xa8ff, 0x7ec7, 0x30ff, | |
| 0x0c8b, 0xc242, 0xcab2, 0x063a, 0xf86e, 0x6057, 0x9cbd, 0xf6d8}, | |
| {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x0310, 0x579d, 0xcb38, 0x9030, 0x3ded, 0x9bb9, 0x1234, 0x63ce, | |
| 0x0c63, 0x8e3d, 0xacfe, 0x3c20, 0xdc85, 0xf859, 0x919e, 0x1d45}}, | |
| /* example with field size as modulus needing 564 divsteps starting at delta=1/2 */ | |
| {{0x63ae, 0x8d10, 0x0071, 0xdb5c, 0xb454, 0x78d1, 0x744a, 0x5f8e, | |
| 0xe4d8, 0x87b1, 0x8e62, 0x9590, 0xcede, 0xa070, 0x36b4, 0x7f6f}, | |
| {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0xfdc8, 0xe8d5, 0xbe15, 0x9f86, 0xa5fe, 0xf18e, 0xa7ff, 0xd291, | |
| 0xf4c2, 0x9c87, 0xf150, 0x073e, 0x69b8, 0xf7c4, 0xee4b, 0xc7e6}}, | |
| /* Test case with the field size as modulus, needing 935 divsteps with | |
| broken eta handling. */ | |
| {{0x1b37, 0xbdc3, 0x8bcd, 0x25e3, 0x1eae, 0x567d, 0x30b6, 0xf0d8, | |
| 0x9277, 0x0cf8, 0x9c2e, 0xecd7, 0x631d, 0xe38f, 0xd4f8, 0x5c93}, | |
| {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x1622, 0xe05b, 0xe880, 0x7de9, 0x3e45, 0xb682, 0xee6c, 0x67ed, | |
| 0xa179, 0x15db, 0x6b0d, 0xa656, 0x7ccb, 0x8ef7, 0xa2ff, 0xe279}}, | |
| /* Test case with the field size as modulus, input = 0. */ | |
| {{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, | |
| {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, | |
| /* Test case with the field size as modulus, input = 1. */ | |
| {{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, | |
| {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, | |
| /* Test case with the field size as modulus, input = 2. */ | |
| {{0x0002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, | |
| {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0xfe18, 0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x7fff}}, | |
| /* Test case with the field size as modulus, input = field - 1. */ | |
| {{0xfc2e, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, | |
| {0xfc2e, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}}, | |
| | |
| /* Selected from a large number of random inputs to reach small/large | |
| * d/e values in various configurations. */ | |
| {{0x3a08, 0x23e1, 0x4d8c, 0xe606, 0x3263, 0x67af, 0x9bf1, 0x9d70, | |
| 0xf5fd, 0x12e4, 0x03c8, 0xb9ca, 0xe847, 0x8c5d, 0x6322, 0xbd30}, | |
| {0x8359, 0x59dd, 0x1831, 0x7c1a, 0x1e83, 0xaee1, 0x770d, 0xcea8, | |
| 0xfbb1, 0xeed6, 0x10b5, 0xe2c6, 0x36ea, 0xee17, 0xe32c, 0xffff}, | |
| {0x1727, 0x0f36, 0x6f85, 0x5d0c, 0xca6c, 0x3072, 0x9628, 0x5842, | |
| 0xcb44, 0x7c2b, 0xca4f, 0x62e5, 0x29b1, 0x6ffd, 0x9055, 0xc196}}, | |
| {{0x905d, 0x41c8, 0xa2ff, 0x295b, 0x72bb, 0x4679, 0x6d01, 0x2c98, | |
| 0xb3e0, 0xc537, 0xa310, 0xe07e, 0xe72f, 0x4999, 0x1148, 0xf65e}, | |
| {0x5b41, 0x4239, 0x3c37, 0x5130, 0x30e3, 0xff35, 0xc51f, 0x1a43, | |
| 0xdb23, 0x13cf, 0x9f49, 0xf70c, 0x5e70, 0xd411, 0x3005, 0xf8c6}, | |
| {0xc30e, 0x68f0, 0x201a, 0xe10c, 0x864a, 0x6243, 0xe946, 0x43ae, | |
| 0xf3f1, 0x52dc, 0x1f7f, 0x50d4, 0x2797, 0x064c, 0x5ca4, 0x90e3}}, | |
| {{0xf1b5, 0xc6e5, 0xd2c4, 0xff95, 0x27c5, 0x0c92, 0x5d19, 0x7ae5, | |
| 0x4fbe, 0x5438, 0x99e1, 0x880d, 0xd892, 0xa05c, 0x6ffd, 0x7eac}, | |
| {0x2153, 0xcc9d, 0xfc6c, 0x8358, 0x49a1, 0x01e2, 0xcef0, 0x4969, | |
| 0xd69a, 0x8cef, 0xf5b2, 0xfd95, 0xdcc2, 0x71f4, 0x6ae2, 0xceeb}, | |
| {0x9b2e, 0xcdc6, 0x0a5c, 0x7317, 0x9084, 0xe228, 0x56cf, 0xd512, | |
| 0x628a, 0xce21, 0x3473, 0x4e13, 0x8823, 0x1ed0, 0x34d0, 0xbfa3}}, | |
| {{0x5bae, 0x53e5, 0x5f4d, 0x21ca, 0xb875, 0x8ecf, 0x9aa6, 0xbe3c, | |
| 0x9f96, 0x7b82, 0x375d, 0x4d3e, 0x491c, 0xb1eb, 0x04c9, 0xb6c8}, | |
| {0xfcfd, 0x10b7, 0x73b2, 0xd23b, 0xa357, 0x67da, 0x0d9f, 0x8702, | |
| 0xa037, 0xff8e, 0x0e8b, 0x1801, 0x2c5c, 0x4e6e, 0x4558, 0xfff2}, | |
| {0xc50f, 0x5654, 0x6713, 0x5ef5, 0xa7ce, 0xa647, 0xc832, 0x69ce, | |
| 0x1d5c, 0x4310, 0x0746, 0x5a01, 0x96ea, 0xde4b, 0xa88b, 0x5543}}, | |
| {{0xdc7f, 0x5e8c, 0x89d1, 0xb077, 0xd521, 0xcf90, 0x32fa, 0x5737, | |
| 0x839e, 0x1464, 0x007c, 0x09c6, 0x9371, 0xe8ea, 0xc1cb, 0x75c4}, | |
| {0xe3a3, 0x107f, 0xa82a, 0xa375, 0x4578, 0x60f4, 0x75c9, 0x5ee4, | |
| 0x3fd7, 0x2736, 0x2871, 0xd3d2, 0x5f1d, 0x1abb, 0xa764, 0xffff}, | |
| {0x45c6, 0x1f2e, 0xb14c, 0x84d7, 0x7bb7, 0x5a04, 0x0504, 0x3f33, | |
| 0x5cc1, 0xb07a, 0x6a6c, 0x786f, 0x647f, 0xe1d7, 0x78a2, 0x4cf4}}, | |
| {{0xc006, 0x356f, 0x8cd2, 0x967b, 0xb49e, 0x2d4e, 0x14bf, 0x4bcb, | |
| 0xddab, 0xd3f9, 0xa068, 0x2c1c, 0xd242, 0xa56d, 0xf2c7, 0x5f97}, | |
| {0x465b, 0xb745, 0x0e0d, 0x69a9, 0x987d, 0xcb37, 0xf637, 0xb311, | |
| 0xc4d6, 0x2ddb, 0xf68f, 0x2af9, 0x959d, 0x3f53, 0x98f2, 0xf640}, | |
| {0xc0f2, 0x6bfb, 0xf5c3, 0x91c1, 0x6b05, 0x0825, 0x5ca0, 0x7df7, | |
| 0x9d55, 0x6d9e, 0xfe94, 0x2ad9, 0xd9f0, 0xe68b, 0xa72b, 0xd1b2}}, | |
| {{0x2279, 0x61ba, 0x5bc6, 0x136b, 0xf544, 0x717c, 0xafda, 0x02bd, | |
| 0x79af, 0x1fad, 0xea09, 0x81bb, 0x932b, 0x32c9, 0xdf1d, 0xe576}, | |
| {0x8215, 0x7817, 0xca82, 0x43b0, 0x9b06, 0xea65, 0x1291, 0x0621, | |
| 0x0089, 0x46fe, 0xc5a6, 0xddd7, 0x8065, 0xc6a0, 0x214b, 0xfc64}, | |
| {0x04bf, 0x6f2a, 0x86b2, 0x841a, 0x4a95, 0xc632, 0x97b7, 0x5821, | |
| 0x2b18, 0x1bb0, 0x3e97, 0x935e, 0xcc7d, 0x066b, 0xd513, 0xc251}}, | |
| {{0x76e8, 0x5bc2, 0x3eaa, 0x04fc, 0x9974, 0x92c1, 0x7c15, 0xfa89, | |
| 0x1151, 0x36ee, 0x48b2, 0x049c, 0x5f16, 0xcee4, 0x925b, 0xe98e}, | |
| {0x913f, 0x0a2d, 0xa185, 0x9fea, 0xda5a, 0x4025, 0x40d7, 0x7cfa, | |
| 0x88ca, 0xbbe8, 0xb265, 0xb7e4, 0x6cb1, 0xed64, 0xc6f9, 0xffb5}, | |
| {0x6ab1, 0x1a86, 0x5009, 0x152b, 0x1cc4, 0xe2c8, 0x960b, 0x19d0, | |
| 0x3554, 0xc562, 0xd013, 0xcf91, 0x10e1, 0x7933, 0xe195, 0xcf49}}, | |
| {{0x9cb5, 0xd2d7, 0xc6ed, 0xa818, 0xb495, 0x06ee, 0x0f4a, 0x06e3, | |
| 0x4c5a, 0x80ce, 0xd49a, 0x4cd7, 0x7487, 0x92af, 0xe516, 0x676c}, | |
| {0xd6e9, 0x6b85, 0x619a, 0xb52c, 0x20a0, 0x2f79, 0x3545, 0x1edd, | |
| 0x5a6f, 0x8082, 0x9b80, 0xf8f8, 0xc78a, 0xd0a3, 0xadf4, 0xffff}, | |
| {0x01c2, 0x2118, 0xef5e, 0xa877, 0x046a, 0xd2c2, 0x2ad5, 0x951c, | |
| 0x8900, 0xa5c9, 0x8d0f, 0x6b61, 0x55d3, 0xd572, 0x48de, 0x9219}}, | |
| {{0x5114, 0x0644, 0x23dd, 0x01d3, 0xc101, 0xa659, 0xea17, 0x640f, | |
| 0xf767, 0x2644, 0x9cec, 0xd8ba, 0xd6da, 0x9156, 0x8aeb, 0x875a}, | |
| {0xc1bf, 0xdae9, 0xe96b, 0xce77, 0xf7a1, 0x3e99, 0x5c2e, 0x973b, | |
| 0xd048, 0x5bd0, 0x4e8a, 0xcb85, 0xce39, 0x37f5, 0x815d, 0xffff}, | |
| {0x48cc, 0x35b6, 0x26d4, 0x2ea6, 0x50d6, 0xa2f9, 0x64b6, 0x03bf, | |
| 0xd00c, 0xe057, 0x3343, 0xfb79, 0x3ce5, 0xf717, 0xc5af, 0xe185}}, | |
| {{0x13ff, 0x6c76, 0x2077, 0x16e0, 0xd5ca, 0xf2ad, 0x8dba, 0x8f49, | |
| 0x7887, 0x16f9, 0xb646, 0xfc87, 0xfa31, 0x5096, 0xf08c, 0x3fbe}, | |
| {0x8139, 0x6fd7, 0xf6df, 0xa7bf, 0x6699, 0x5361, 0x6f65, 0x13c8, | |
| 0xf4d1, 0xe28f, 0xc545, 0x0a8c, 0x5274, 0xb0a6, 0xffff, 0xffff}, | |
| {0x22ca, 0x0cd6, 0xc1b5, 0xb064, 0x44a7, 0x297b, 0x495f, 0x34ac, | |
| 0xfa95, 0xec62, 0xf08d, 0x621c, 0x66a6, 0xba94, 0x84c6, 0x8ee0}}, | |
| {{0xaa30, 0x312e, 0x439c, 0x4e88, 0x2e2f, 0x32dc, 0xb880, 0xa28e, | |
| 0xf795, 0xc910, 0xb406, 0x8dd7, 0xb187, 0xa5a5, 0x38f1, 0xe49e}, | |
| {0xfb19, 0xf64a, 0xba6a, 0x8ec2, 0x7255, 0xce89, 0x2cf9, 0x9cba, | |
| 0xe1fe, 0x50da, 0x1705, 0xac52, 0xe3d4, 0x4269, 0x0648, 0xfd77}, | |
| {0xb4c8, 0x6e8a, 0x2b5f, 0x4c2d, 0x5a67, 0xa7bb, 0x7d6d, 0x5569, | |
| 0xa0ea, 0x244a, 0xc0f2, 0xf73d, 0x58cf, 0xac7f, 0xd32b, 0x3018}}, | |
| {{0xc953, 0x1ae1, 0xae46, 0x8709, 0x19c2, 0xa986, 0x9abe, 0x1611, | |
| 0x0395, 0xd5ab, 0xf0f6, 0xb5b0, 0x5b2b, 0x0317, 0x80ba, 0x376d}, | |
| {0xfe77, 0xbc03, 0xac2f, 0x9d00, 0xa175, 0x293d, 0x3b56, 0x0e3a, | |
| 0x0a9c, 0xf40c, 0x690e, 0x1508, 0x95d4, 0xddc4, 0xe805, 0xffff}, | |
| {0xb1ce, 0x0929, 0xa5fe, 0x4b50, 0x9d5d, 0x8187, 0x2557, 0x4376, | |
| 0x11ba, 0xdcef, 0xc1f3, 0xd531, 0x1824, 0x93f6, 0xd81f, 0x8f83}}, | |
| {{0xb8d2, 0xb900, 0x4a0c, 0x7188, 0xa5bf, 0x1b0b, 0x2ae5, 0xa35b, | |
| 0x98e0, 0x610c, 0x86db, 0x2487, 0xa267, 0x002c, 0xebb6, 0xc5f4}, | |
| {0x9cdd, 0x1c1b, 0x2f06, 0x43d1, 0xce47, 0xc334, 0x6e60, 0xc016, | |
| 0x989e, 0x0ab2, 0x0cac, 0x1196, 0xe2d9, 0x2e04, 0xc62b, 0xffff}, | |
| {0xdc36, 0x1f05, 0x6aa9, 0x7a20, 0x944f, 0x2fd3, 0xa553, 0xdb4f, | |
| 0xbd5c, 0x3a75, 0x25d4, 0xe20e, 0xa387, 0x1410, 0xdbb1, 0x1b60}}, | |
| {{0x76b3, 0x2207, 0x4930, 0x5dd7, 0x65a0, 0xd55c, 0xb443, 0x53b7, | |
| 0x5c22, 0x818a, 0xb2e7, 0x9de8, 0x9985, 0xed45, 0x33b1, 0x53e8}, | |
| {0x7913, 0x44e1, 0xf15b, 0x5edd, 0x34f3, 0x4eba, 0x0758, 0x7104, | |
| 0x32d9, 0x28f3, 0x4401, 0x85c5, 0xb695, 0xb899, 0xc0f2, 0xffff}, | |
| {0x7f43, 0xd202, 0x24c9, 0x69f3, 0x74dc, 0x1a69, 0xeaee, 0x5405, | |
| 0x1755, 0x4bb8, 0x04e3, 0x2fd2, 0xada8, 0x39eb, 0x5b4d, 0x96ca}}, | |
| {{0x807b, 0x7112, 0xc088, 0xdafd, 0x02fa, 0x9d95, 0x5e42, 0xc033, | |
| 0xde0a, 0xeecf, 0x8e90, 0x8da1, 0xb17e, 0x9a5b, 0x4c6d, 0x1914}, | |
| {0x4871, 0xd1cb, 0x47d7, 0x327f, 0x09ec, 0x97bb, 0x2fae, 0xd346, | |
| 0x6b78, 0x3707, 0xfeb2, 0xa6ab, 0x13df, 0x76b0, 0x8fb9, 0xffb3}, | |
| {0x179e, 0xb63b, 0x4784, 0x231e, 0x9f42, 0x7f1a, 0xa3fb, 0xdd8c, | |
| 0xd1eb, 0xb4c9, 0x8ca7, 0x018c, 0xf691, 0x576c, 0xa7d6, 0xce27}}, | |
| {{0x5f45, 0x7c64, 0x083d, 0xedd5, 0x08a0, 0x0c64, 0x6c6f, 0xec3c, | |
| 0xe2fb, 0x352c, 0x9303, 0x75e4, 0xb4e0, 0x8b09, 0xaca4, 0x7025}, | |
| {0x1025, 0xb482, 0xfed5, 0xa678, 0x8966, 0x9359, 0x5329, 0x98bb, | |
| 0x85b2, 0x73ba, 0x9982, 0x6fdc, 0xf190, 0xbe8c, 0xdc5c, 0xfd93}, | |
| {0x83a2, 0x87a4, 0xa680, 0x52a1, 0x1ba1, 0x8848, 0x5db7, 0x9744, | |
| 0x409c, 0x0745, 0x0e1e, 0x1cfc, 0x00cd, 0xf573, 0x2071, 0xccaa}}, | |
| {{0xf61f, 0x63d4, 0x536c, 0x9eb9, 0x5ddd, 0xbb11, 0x9014, 0xe904, | |
| 0xfe01, 0x6b45, 0x1858, 0xcb5b, 0x4c38, 0x43e1, 0x381d, 0x7f94}, | |
| {0xf61f, 0x63d4, 0xd810, 0x7ca3, 0x8a04, 0x4b83, 0x11fc, 0xdf94, | |
| 0x4169, 0xbd05, 0x608e, 0x7151, 0x4fbf, 0xb31a, 0x38a7, 0xa29b}, | |
| {0xe621, 0xdfa5, 0x3d06, 0x1d03, 0x81e6, 0x00da, 0x53a6, 0x965e, | |
| 0x93e5, 0x2164, 0x5b61, 0x59b8, 0xa629, 0x8d73, 0x699a, 0x6111}}, | |
| {{0x4cc3, 0xd29e, 0xf4a3, 0x3428, 0x2048, 0xeec9, 0x5f50, 0x99a4, | |
| 0x6de9, 0x05f2, 0x5aa9, 0x5fd2, 0x98b4, 0x1adc, 0x225f, 0x777f}, | |
| {0xe649, 0x37da, 0x5ba6, 0x5765, 0x3f4a, 0x8a1c, 0x2e79, 0xf550, | |
| 0x1a54, 0xcd1e, 0x7218, 0x3c3c, 0x6311, 0xfe28, 0x95fb, 0xed97}, | |
| {0xe9b6, 0x0c47, 0x3f0e, 0x849b, 0x11f8, 0xe599, 0x5e4d, 0xd618, | |
| 0xa06d, 0x33a0, 0x9a3e, 0x44db, 0xded8, 0x10f0, 0x94d2, 0x81fb}}, | |
| {{0x2e59, 0x7025, 0xd413, 0x455a, 0x1ce3, 0xbd45, 0x7263, 0x27f7, | |
| 0x23e3, 0x518e, 0xbe06, 0xc8c4, 0xe332, 0x4276, 0x68b4, 0xb166}, | |
| {0x596f, 0x0cf6, 0xc8ec, 0x787b, 0x04c1, 0x473c, 0xd2b8, 0x8d54, | |
| 0x9cdf, 0x77f2, 0xd3f3, 0x6735, 0x0638, 0xf80e, 0x9467, 0xc6aa}, | |
| {0xc7e7, 0x1822, 0xb62a, 0xec0d, 0x89cd, 0x7846, 0xbfa2, 0x35d5, | |
| 0xfa38, 0x870f, 0x494b, 0x1697, 0x8b17, 0xf904, 0x10b6, 0x9822}}, | |
| {{0x6d5b, 0x1d4f, 0x0aaf, 0x807b, 0x35fb, 0x7ee8, 0x00c6, 0x059a, | |
| 0xddf0, 0x1fb1, 0xc38a, 0xd78e, 0x2aa4, 0x79e7, 0xad28, 0xc3f1}, | |
| {0xe3bb, 0x174e, 0xe0a8, 0x74b6, 0xbd5b, 0x35f6, 0x6d23, 0x6328, | |
| 0xc11f, 0x83e1, 0xf928, 0xa918, 0x838e, 0xbf43, 0xe243, 0xfffb}, | |
| {0x9cf2, 0x6b8b, 0x3476, 0x9d06, 0xdcf2, 0xdb8a, 0x89cd, 0x4857, | |
| 0x75c2, 0xabb8, 0x490b, 0xc9bd, 0x890e, 0xe36e, 0xd552, 0xfffa}}, | |
| {{0x2f09, 0x9d62, 0xa9fc, 0xf090, 0xd6d1, 0x9d1d, 0x1828, 0xe413, | |
| 0xc92b, 0x3d5a, 0x1373, 0x368c, 0xbaf2, 0x2158, 0x71eb, 0x08a3}, | |
| {0x2f09, 0x1d62, 0x4630, 0x0de1, 0x06dc, 0xf7f1, 0xc161, 0x1e92, | |
| 0x7495, 0x97e4, 0x94b6, 0xa39e, 0x4f1b, 0x18f8, 0x7bd4, 0x0c4c}, | |
| {0xeb3d, 0x723d, 0x0907, 0x525b, 0x463a, 0x49a8, 0xc6b8, 0xce7f, | |
| 0x740c, 0x0d7d, 0xa83b, 0x457f, 0xae8e, 0xc6af, 0xd331, 0x0475}}, | |
| {{0x6abd, 0xc7af, 0x3e4e, 0x95fd, 0x8fc4, 0xee25, 0x1f9c, 0x0afe, | |
| 0x291d, 0xcde0, 0x48f4, 0xb2e8, 0xf7af, 0x8f8d, 0x0bd6, 0x078d}, | |
| {0x4037, 0xbf0e, 0x2081, 0xf363, 0x13b2, 0x381e, 0xfb6e, 0x818e, | |
| 0x27e4, 0x5662, 0x18b0, 0x0cd2, 0x81f5, 0x9415, 0x0d6c, 0xf9fb}, | |
| {0xd205, 0x0981, 0x0498, 0x1f08, 0xdb93, 0x1732, 0x0579, 0x1424, | |
| 0xad95, 0x642f, 0x050c, 0x1d6d, 0xfc95, 0xfc4a, 0xd41b, 0x3521}}, | |
| {{0xf23a, 0x4633, 0xaef4, 0x1a92, 0x3c8b, 0x1f09, 0x30f3, 0x4c56, | |
| 0x2a2f, 0x4f62, 0xf5e4, 0x8329, 0x63cc, 0xb593, 0xec6a, 0xc428}, | |
| {0x93a7, 0xfcf6, 0x606d, 0xd4b2, 0x2aad, 0x28b4, 0xc65b, 0x8998, | |
| 0x4e08, 0xd178, 0x0900, 0xc82b, 0x7470, 0xa342, 0x7c0f, 0xffff}, | |
| {0x315f, 0xf304, 0xeb7b, 0xe5c3, 0x1451, 0x6311, 0x8f37, 0x93a8, | |
| 0x4a38, 0xa6c6, 0xe393, 0x1087, 0x6301, 0xd673, 0x4ec4, 0xffff}}, | |
| {{0x892e, 0xeed0, 0x1165, 0xcbc1, 0x5545, 0xa280, 0x7243, 0x10c9, | |
| 0x9536, 0x36af, 0xb3fc, 0x2d7c, 0xe8a5, 0x09d6, 0xe1d4, 0xe85d}, | |
| {0xae09, 0xc28a, 0xd777, 0xbd80, 0x23d6, 0xf980, 0xeb7c, 0x4e0e, | |
| 0xf7dc, 0x6475, 0xf10a, 0x2d33, 0x5dfd, 0x797a, 0x7f1c, 0xf71a}, | |
| {0x4064, 0x8717, 0xd091, 0x80b0, 0x4527, 0x8442, 0xac8b, 0x9614, | |
| 0xc633, 0x35f5, 0x7714, 0x2e83, 0x4aaa, 0xd2e4, 0x1acd, 0x0562}}, | |
| {{0xdb64, 0x0937, 0x308b, 0x53b0, 0x00e8, 0xc77f, 0x2f30, 0x37f7, | |
| 0x79ce, 0xeb7f, 0xde81, 0x9286, 0xafda, 0x0e62, 0xae00, 0x0067}, | |
| {0x2cc7, 0xd362, 0xb161, 0x0557, 0x4ff2, 0xb9c8, 0x06fe, 0x5f2b, | |
| 0xde33, 0x0190, 0x28c6, 0xb886, 0xee2b, 0x5a4e, 0x3289, 0x0185}, | |
| {0x4215, 0x923e, 0xf34f, 0xb362, 0x88f8, 0xceec, 0xafdd, 0x7f42, | |
| 0x0c57, 0x56b2, 0xa366, 0x6a08, 0x0826, 0xfb8f, 0x1b03, 0x0163}}, | |
| {{0xa4ba, 0x8408, 0x810a, 0xdeba, 0x47a3, 0x853a, 0xeb64, 0x2f74, | |
| 0x3039, 0x038c, 0x7fbb, 0x498e, 0xd1e9, 0x46fb, 0x5691, 0x32a4}, | |
| {0xd749, 0xb49d, 0x20b7, 0x2af6, 0xd34a, 0xd2da, 0x0a10, 0xf781, | |
| 0x58c9, 0x171f, 0x3cb6, 0x6337, 0x88cd, 0xcf1e, 0xb246, 0x7351}, | |
| {0xf729, 0xcf0a, 0x96ea, 0x032c, 0x4a8f, 0x42fe, 0xbac8, 0xec65, | |
| 0x1510, 0x0d75, 0x4c17, 0x8d29, 0xa03f, 0x8b7e, 0x2c49, 0x0000}}, | |
| {{0x0fa4, 0x8e1c, 0x3788, 0xba3c, 0x8d52, 0xd89d, 0x12c8, 0xeced, | |
| 0x9fe6, 0x9b88, 0xecf3, 0xe3c8, 0xac48, 0x76ed, 0xf23e, 0xda79}, | |
| {0x1103, 0x227c, 0x5b00, 0x3fcf, 0xc5d0, 0x2d28, 0x8020, 0x4d1c, | |
| 0xc6b9, 0x67f9, 0x6f39, 0x989a, 0xda53, 0x3847, 0xd416, 0xe0d0}, | |
| {0xdd8e, 0xcf31, 0x3710, 0x7e44, 0xa511, 0x933c, 0x0cc3, 0x5145, | |
| 0xf632, 0x5e1d, 0x038f, 0x5ce7, 0x7265, 0xda9d, 0xded6, 0x08f8}}, | |
| {{0xe2c8, 0x91d5, 0xa5f5, 0x735f, 0x6b58, 0x56dc, 0xb39d, 0x5c4a, | |
| 0x57d0, 0xa1c2, 0xd92f, 0x9ad4, 0xf7c4, 0x51dd, 0xaf5c, 0x0096}, | |
| {0x1739, 0x7207, 0x7505, 0xbf35, 0x42de, 0x0a29, 0xa962, 0xdedf, | |
| 0x53e8, 0x12bf, 0xcde7, 0xd8e2, 0x8d4d, 0x2c4b, 0xb1b1, 0x0628}, | |
| {0x992d, 0xe3a7, 0xb422, 0xc198, 0x23ab, 0xa6ef, 0xb45d, 0x50da, | |
| 0xa738, 0x014a, 0x2310, 0x85fb, 0x5fe8, 0x1b18, 0x1774, 0x03a7}}, | |
| {{0x1f16, 0x2b09, 0x0236, 0xee90, 0xccf9, 0x9775, 0x8130, 0x4c91, | |
| 0x9091, 0x310b, 0x6dc4, 0x86f6, 0xc2e8, 0xef60, 0xfc0e, 0xf3a4}, | |
| {0x9f49, 0xac15, 0x02af, 0x110f, 0xc59d, 0x5677, 0xa1a9, 0x38d5, | |
| 0x914f, 0xa909, 0x3a3a, 0x4a39, 0x3703, 0xea30, 0x73da, 0xffad}, | |
| {0x15ed, 0xdd16, 0x83c7, 0x270a, 0x862f, 0xd8ad, 0xcaa1, 0x5f41, | |
| 0x99a9, 0x3fc8, 0x7bb2, 0x360a, 0xb06d, 0xfadc, 0x1b36, 0xffa8}}, | |
| {{0xc4e0, 0xb8fd, 0x5106, 0xe169, 0x754c, 0xa58c, 0xc413, 0x8224, | |
| 0x5483, 0x63ec, 0xd477, 0x8473, 0x4778, 0x9281, 0x0000, 0x0000}, | |
| {0x85e1, 0xff54, 0xb200, 0xe413, 0xf4f4, 0x4c0f, 0xfcec, 0xc183, | |
| 0x60d3, 0x1b0c, 0x3834, 0x601c, 0x943c, 0xbe6e, 0x0002, 0x0000}, | |
| {0xf4f8, 0xfd5e, 0x61ef, 0xece8, 0x9199, 0xe5c4, 0x05a6, 0xe6c3, | |
| 0xc4ae, 0x8b28, 0x66b1, 0x8a95, 0x9ece, 0x8f4a, 0x0001, 0x0000}}, | |
| {{0xeae9, 0xa1b4, 0xc6d8, 0x2411, 0x2b5a, 0x1dd0, 0x2dc9, 0xb57b, | |
| 0x5ccd, 0x4957, 0xaf59, 0xa04b, 0x5f42, 0xab7c, 0x2826, 0x526f}, | |
| {0xf407, 0x165a, 0xb724, 0x2f12, 0x2ea1, 0x470b, 0x4464, 0xbd35, | |
| 0x606f, 0xd73e, 0x50d3, 0x8a7f, 0x8029, 0x7ffc, 0xbe31, 0x6cfb}, | |
| {0x8171, 0x1f4c, 0xced2, 0x9c99, 0x6d7e, 0x5a0f, 0xfefb, 0x59e3, | |
| 0xa0c8, 0xabd9, 0xc4c5, 0x57d3, 0xbfa3, 0x4f11, 0x96a2, 0x5a7d}}, | |
| {{0xe068, 0x4cc0, 0x8bcd, 0xc903, 0x9e52, 0xb3e1, 0xd745, 0x0995, | |
| 0xdd8f, 0xf14b, 0xd2ac, 0xd65a, 0xda1d, 0xa742, 0xbac5, 0x474c}, | |
| {0x7481, 0xf2ad, 0x9757, 0x2d82, 0xb683, 0xb16b, 0x0002, 0x7b60, | |
| 0x8f0c, 0x2594, 0x8f64, 0x3b7a, 0x3552, 0x8d9d, 0xb9d7, 0x67eb}, | |
| {0xcaab, 0xb9a1, 0xf966, 0xe311, 0x5b34, 0x0fa0, 0x6abc, 0x8134, | |
| 0xab3d, 0x90f6, 0x1984, 0x9232, 0xec17, 0x74e5, 0x2ceb, 0x434e}}, | |
| {{0x0fb1, 0x7a55, 0x1a5c, 0x53eb, 0xd7b3, 0x7a01, 0xca32, 0x31f6, | |
| 0x3b74, 0x679e, 0x1501, 0x6c57, 0xdb20, 0x8b7c, 0xd7d0, 0x8097}, | |
| {0xb127, 0xb20c, 0xe3a2, 0x96f3, 0xe0d8, 0xd50c, 0x14b4, 0x0b40, | |
| 0x6eeb, 0xa258, 0x99db, 0x3c8c, 0x0f51, 0x4198, 0x3887, 0xffd0}, | |
| {0x0273, 0x9f8c, 0x9669, 0xbbba, 0x1c49, 0x767c, 0xc2af, 0x59f0, | |
| 0x1366, 0xd397, 0x63ac, 0x6fe8, 0x1a9a, 0x1259, 0x01d0, 0x0016}}, | |
| {{0x7876, 0x2a35, 0xa24a, 0x433e, 0x5501, 0x573c, 0xd76d, 0xcb82, | |
| 0x1334, 0xb4a6, 0xf290, 0xc797, 0xeae9, 0x2b83, 0x1e2b, 0x8b14}, | |
| {0x3885, 0x8aef, 0x9dea, 0x2b8c, 0xdd7c, 0xd7cd, 0xb0cc, 0x05ee, | |
| 0x361b, 0x3800, 0xb0d4, 0x4c23, 0xbd3f, 0x5180, 0x9783, 0xff80}, | |
| {0xab36, 0x3104, 0xdae8, 0x0704, 0x4a28, 0x6714, 0x824b, 0x0051, | |
| 0x8134, 0x1f6a, 0x712d, 0x1f03, 0x03b2, 0xecac, 0x377d, 0xfef9}} | |
| }; | |
| | |
| int i, j, ok; | |
| | |
| /* Test known inputs/outputs */ | |
| for (i = 0; (size_t)i < sizeof(CASES) / sizeof(CASES[0]); ++i) { | |
| uint16_t out[16]; | |
| test_modinv32_uint16(out, CASES[i][0], CASES[i][1]); | |
| for (j = 0; j < 16; ++j) CHECK(out[j] == CASES[i][2][j]); | |
| #ifdef SECP256K1_WIDEMUL_INT128 | |
| test_modinv64_uint16(out, CASES[i][0], CASES[i][1]); | |
| for (j = 0; j < 16; ++j) CHECK(out[j] == CASES[i][2][j]); | |
| #endif | |
| } | |
| | |
| for (i = 0; i < 100 * COUNT; ++i) { | |
| /* 256-bit numbers in 16-uint16_t's notation */ | |
| static const uint16_t ZERO[16] = {0}; | |
| uint16_t xd[16]; /* the number (in range [0,2^256)) to be inverted */ | |
| uint16_t md[16]; /* the modulus (odd, in range [3,2^256)) */ | |
| uint16_t id[16]; /* the inverse of xd mod md */ | |
| | |
| /* generate random xd and md, so that md is odd, md>1, xd<md, and gcd(xd,md)=1 */ | |
| do { | |
| /* generate random xd and md (with many subsequent 0s and 1s) */ | |
| testrand256_test((unsigned char*)xd); | |
| testrand256_test((unsigned char*)md); | |
| md[0] |= 1; /* modulus must be odd */ | |
| /* If modulus is 1, find another one. */ | |
| ok = md[0] != 1; | |
| for (j = 1; j < 16; ++j) ok |= md[j] != 0; | |
| mulmod256(xd, xd, NULL, md); /* Make xd = xd mod md */ | |
| } while (!(ok && coprime(xd, md))); | |
| | |
| test_modinv32_uint16(id, xd, md); | |
| #ifdef SECP256K1_WIDEMUL_INT128 | |
| test_modinv64_uint16(id, xd, md); | |
| #endif | |
| | |
| /* In a few cases, also test with input=0 */ | |
| if (i < COUNT) { | |
| test_modinv32_uint16(id, ZERO, md); | |
| #ifdef SECP256K1_WIDEMUL_INT128 | |
| test_modinv64_uint16(id, ZERO, md); | |
| #endif | |
| } | |
| } | |
| } | |
| | |
| /***** INT128 TESTS *****/ | |
| | |
| #ifdef SECP256K1_WIDEMUL_INT128 | |
| /* Add two 256-bit numbers (represented as 16 uint16_t's in LE order) together mod 2^256. */ | |
| static void add256(uint16_t* out, const uint16_t* a, const uint16_t* b) { | |
| int i; | |
| uint32_t carry = 0; | |
| for (i = 0; i < 16; ++i) { | |
| carry += a[i]; | |
| carry += b[i]; | |
| out[i] = carry; | |
| carry >>= 16; | |
| } | |
| } | |
| | |
| /* Negate a 256-bit number (represented as 16 uint16_t's in LE order) mod 2^256. */ | |
| static void neg256(uint16_t* out, const uint16_t* a) { | |
| int i; | |
| uint32_t carry = 1; | |
| for (i = 0; i < 16; ++i) { | |
| carry += (uint16_t)~a[i]; | |
| out[i] = carry; | |
| carry >>= 16; | |
| } | |
| } | |
| | |
| /* Right-shift a 256-bit number (represented as 16 uint16_t's in LE order). */ | |
| static void rshift256(uint16_t* out, const uint16_t* a, int n, int sign_extend) { | |
| uint16_t sign = sign_extend && (a[15] >> 15); | |
| int i, j; | |
| for (i = 15; i >= 0; --i) { | |
| uint16_t v = 0; | |
| for (j = 0; j < 16; ++j) { | |
| int frompos = i*16 + j + n; | |
| if (frompos >= 256) { | |
| v |= sign << j; | |
| } else { | |
| v |= ((uint16_t)((a[frompos >> 4] >> (frompos & 15)) & 1)) << j; | |
| } | |
| } | |
| out[i] = v; | |
| } | |
| } | |
| | |
| /* Load a 64-bit unsigned integer into an array of 16 uint16_t's in LE order representing a 256-bit value. */ | |
| static void load256u64(uint16_t* out, uint64_t v, int is_signed) { | |
| int i; | |
| uint64_t sign = is_signed && (v >> 63) ? UINT64_MAX : 0; | |
| for (i = 0; i < 4; ++i) { | |
| out[i] = v >> (16 * i); | |
| } | |
| for (i = 4; i < 16; ++i) { | |
| out[i] = sign; | |
| } | |
| } | |
| | |
| /* Load a 128-bit unsigned integer into an array of 16 uint16_t's in LE order representing a 256-bit value. */ | |
| static void load256two64(uint16_t* out, uint64_t hi, uint64_t lo, int is_signed) { | |
| int i; | |
| uint64_t sign = is_signed && (hi >> 63) ? UINT64_MAX : 0; | |
| for (i = 0; i < 4; ++i) { | |
| out[i] = lo >> (16 * i); | |
| } | |
| for (i = 4; i < 8; ++i) { | |
| out[i] = hi >> (16 * (i - 4)); | |
| } | |
| for (i = 8; i < 16; ++i) { | |
| out[i] = sign; | |
| } | |
| } | |
| | |
| /* Check whether the 256-bit value represented by array of 16-bit values is in range -2^127 < v < 2^127. */ | |
| static int int256is127(const uint16_t* v) { | |
| int all_0 = ((v[7] & 0x8000) == 0), all_1 = ((v[7] & 0x8000) == 0x8000); | |
| int i; | |
| for (i = 8; i < 16; ++i) { | |
| if (v[i] != 0) all_0 = 0; | |
| if (v[i] != 0xffff) all_1 = 0; | |
| } | |
| return all_0 || all_1; | |
| } | |
| | |
| static void load256u128(uint16_t* out, const secp256k1_uint128* v) { | |
| uint64_t lo = secp256k1_u128_to_u64(v), hi = secp256k1_u128_hi_u64(v); | |
| load256two64(out, hi, lo, 0); | |
| } | |
| | |
| static void load256i128(uint16_t* out, const secp256k1_int128* v) { | |
| uint64_t lo; | |
| int64_t hi; | |
| secp256k1_int128 c = *v; | |
| lo = secp256k1_i128_to_u64(&c); | |
| secp256k1_i128_rshift(&c, 64); | |
| hi = secp256k1_i128_to_i64(&c); | |
| load256two64(out, hi, lo, 1); | |
| } | |
| | |
| static void run_int128_test_case(void) { | |
| unsigned char buf[32]; | |
| uint64_t v[4]; | |
| secp256k1_int128 swa, swz; | |
| secp256k1_uint128 uwa, uwz; | |
| uint64_t ub, uc; | |
| int64_t sb, sc; | |
| uint16_t rswa[16], rswz[32], rswr[32], ruwa[16], ruwz[32], ruwr[32]; | |
| uint16_t rub[16], ruc[16], rsb[16], rsc[16]; | |
| int i; | |
| | |
| /* Generate 32-byte random value. */ | |
| testrand256_test(buf); | |
| /* Convert into 4 64-bit integers. */ | |
| for (i = 0; i < 4; ++i) { | |
| uint64_t vi = 0; | |
| int j; | |
| for (j = 0; j < 8; ++j) vi = (vi << 8) + buf[8*i + j]; | |
| v[i] = vi; | |
| } | |
| /* Convert those into a 128-bit value and two 64-bit values (signed and unsigned). */ | |
| secp256k1_u128_load(&uwa, v[1], v[0]); | |
| secp256k1_i128_load(&swa, v[1], v[0]); | |
| ub = v[2]; | |
| sb = v[2]; | |
| uc = v[3]; | |
| sc = v[3]; | |
| /* Load those also into 16-bit array representations. */ | |
| load256u128(ruwa, &uwa); | |
| load256i128(rswa, &swa); | |
| load256u64(rub, ub, 0); | |
| load256u64(rsb, sb, 1); | |
| load256u64(ruc, uc, 0); | |
| load256u64(rsc, sc, 1); | |
| /* test secp256k1_u128_mul */ | |
| mulmod256(ruwr, rub, ruc, NULL); | |
| secp256k1_u128_mul(&uwz, ub, uc); | |
| load256u128(ruwz, &uwz); | |
| CHECK(secp256k1_memcmp_var(ruwr, ruwz, 16) == 0); | |
| /* test secp256k1_u128_accum_mul */ | |
| mulmod256(ruwr, rub, ruc, NULL); | |
| add256(ruwr, ruwr, ruwa); | |
| uwz = uwa; | |
| secp256k1_u128_accum_mul(&uwz, ub, uc); | |
| load256u128(ruwz, &uwz); | |
| CHECK(secp256k1_memcmp_var(ruwr, ruwz, 16) == 0); | |
| /* test secp256k1_u128_accum_u64 */ | |
| add256(ruwr, rub, ruwa); | |
| uwz = uwa; | |
| secp256k1_u128_accum_u64(&uwz, ub); | |
| load256u128(ruwz, &uwz); | |
| CHECK(secp256k1_memcmp_var(ruwr, ruwz, 16) == 0); | |
| /* test secp256k1_u128_rshift */ | |
| rshift256(ruwr, ruwa, uc % 128, 0); | |
| uwz = uwa; | |
| secp256k1_u128_rshift(&uwz, uc % 128); | |
| load256u128(ruwz, &uwz); | |
| CHECK(secp256k1_memcmp_var(ruwr, ruwz, 16) == 0); | |
| /* test secp256k1_u128_to_u64 */ | |
| CHECK(secp256k1_u128_to_u64(&uwa) == v[0]); | |
| /* test secp256k1_u128_hi_u64 */ | |
| CHECK(secp256k1_u128_hi_u64(&uwa) == v[1]); | |
| /* test secp256k1_u128_from_u64 */ | |
| secp256k1_u128_from_u64(&uwz, ub); | |
| load256u128(ruwz, &uwz); | |
| CHECK(secp256k1_memcmp_var(rub, ruwz, 16) == 0); | |
| /* test secp256k1_u128_check_bits */ | |
| { | |
| int uwa_bits = 0; | |
| int j; | |
| for (j = 0; j < 128; ++j) { | |
| if (ruwa[j / 16] >> (j % 16)) uwa_bits = 1 + j; | |
| } | |
| for (j = 0; j < 128; ++j) { | |
| CHECK(secp256k1_u128_check_bits(&uwa, j) == (uwa_bits <= j)); | |
| } | |
| } | |
| /* test secp256k1_i128_mul */ | |
| mulmod256(rswr, rsb, rsc, NULL); | |
| secp256k1_i128_mul(&swz, sb, sc); | |
| load256i128(rswz, &swz); | |
| CHECK(secp256k1_memcmp_var(rswr, rswz, 16) == 0); | |
| /* test secp256k1_i128_accum_mul */ | |
| mulmod256(rswr, rsb, rsc, NULL); | |
| add256(rswr, rswr, rswa); | |
| if (int256is127(rswr)) { | |
| swz = swa; | |
| secp256k1_i128_accum_mul(&swz, sb, sc); | |
| load256i128(rswz, &swz); | |
| CHECK(secp256k1_memcmp_var(rswr, rswz, 16) == 0); | |
| } | |
| /* test secp256k1_i128_det */ | |
| { | |
| uint16_t rsd[16], rse[16], rst[32]; | |
| int64_t sd = v[0], se = v[1]; | |
| load256u64(rsd, sd, 1); | |
| load256u64(rse, se, 1); | |
| mulmod256(rst, rsc, rsd, NULL); | |
| neg256(rst, rst); | |
| mulmod256(rswr, rsb, rse, NULL); | |
| add256(rswr, rswr, rst); | |
| secp256k1_i128_det(&swz, sb, sc, sd, se); | |
| load256i128(rswz, &swz); | |
| CHECK(secp256k1_memcmp_var(rswr, rswz, 16) == 0); | |
| } | |
| /* test secp256k1_i128_rshift */ | |
| rshift256(rswr, rswa, uc % 127, 1); | |
| swz = swa; | |
| secp256k1_i128_rshift(&swz, uc % 127); | |
| load256i128(rswz, &swz); | |
| CHECK(secp256k1_memcmp_var(rswr, rswz, 16) == 0); | |
| /* test secp256k1_i128_to_u64 */ | |
| CHECK(secp256k1_i128_to_u64(&swa) == v[0]); | |
| /* test secp256k1_i128_from_i64 */ | |
| secp256k1_i128_from_i64(&swz, sb); | |
| load256i128(rswz, &swz); | |
| CHECK(secp256k1_memcmp_var(rsb, rswz, 16) == 0); | |
| /* test secp256k1_i128_to_i64 */ | |
| CHECK(secp256k1_i128_to_i64(&swz) == sb); | |
| /* test secp256k1_i128_eq_var */ | |
| { | |
| int expect = (uc & 1); | |
| swz = swa; | |
| if (!expect) { | |
| /* Make sure swz != swa */ | |
| uint64_t v0c = v[0], v1c = v[1]; | |
| if (ub & 64) { | |
| v1c ^= (((uint64_t)1) << (ub & 63)); | |
| } else { | |
| v0c ^= (((uint64_t)1) << (ub & 63)); | |
| } | |
| secp256k1_i128_load(&swz, v1c, v0c); | |
| } | |
| CHECK(secp256k1_i128_eq_var(&swa, &swz) == expect); | |
| } | |
| /* test secp256k1_i128_check_pow2 (sign == 1) */ | |
| { | |
| int expect = (uc & 1); | |
| int pos = ub % 127; | |
| if (expect) { | |
| /* If expect==1, set swz to exactly 2^pos. */ | |
| uint64_t hi = 0; | |
| uint64_t lo = 0; | |
| if (pos >= 64) { | |
| hi = (((uint64_t)1) << (pos & 63)); | |
| } else { | |
| lo = (((uint64_t)1) << (pos & 63)); | |
| } | |
| secp256k1_i128_load(&swz, hi, lo); | |
| } else { | |
| /* If expect==0, set swz = swa, but update expect=1 if swa happens to equal 2^pos. */ | |
| if (pos >= 64) { | |
| if ((v[1] == (((uint64_t)1) << (pos & 63))) && v[0] == 0) expect = 1; | |
| } else { | |
| if ((v[0] == (((uint64_t)1) << (pos & 63))) && v[1] == 0) expect = 1; | |
| } | |
| swz = swa; | |
| } | |
| CHECK(secp256k1_i128_check_pow2(&swz, pos, 1) == expect); | |
| } | |
| /* test secp256k1_i128_check_pow2 (sign == -1) */ | |
| { | |
| int expect = (uc & 1); | |
| int pos = ub % 127; | |
| if (expect) { | |
| /* If expect==1, set swz to exactly -2^pos. */ | |
| uint64_t hi = ~(uint64_t)0; | |
| uint64_t lo = ~(uint64_t)0; | |
| if (pos >= 64) { | |
| hi <<= (pos & 63); | |
| lo = 0; | |
| } else { | |
| lo <<= (pos & 63); | |
| } | |
| secp256k1_i128_load(&swz, hi, lo); | |
| } else { | |
| /* If expect==0, set swz = swa, but update expect=1 if swa happens to equal -2^pos. */ | |
| if (pos >= 64) { | |
| if ((v[1] == ((~(uint64_t)0) << (pos & 63))) && v[0] == 0) expect = 1; | |
| } else { | |
| if ((v[0] == ((~(uint64_t)0) << (pos & 63))) && v[1] == ~(uint64_t)0) expect = 1; | |
| } | |
| swz = swa; | |
| } | |
| CHECK(secp256k1_i128_check_pow2(&swz, pos, -1) == expect); | |
| } | |
| } | |
| | |
| static void run_int128_tests(void) { | |
| { /* secp256k1_u128_accum_mul */ | |
| secp256k1_uint128 res; | |
| | |
| /* Check secp256k1_u128_accum_mul overflow */ | |
| secp256k1_u128_mul(&res, UINT64_MAX, UINT64_MAX); | |
| secp256k1_u128_accum_mul(&res, UINT64_MAX, UINT64_MAX); | |
| CHECK(secp256k1_u128_to_u64(&res) == 2); | |
| CHECK(secp256k1_u128_hi_u64(&res) == 18446744073709551612U); | |
| } | |
| { /* secp256k1_u128_accum_mul */ | |
| secp256k1_int128 res; | |
| | |
| /* Compute INT128_MAX = 2^127 - 1 with secp256k1_i128_accum_mul */ | |
| secp256k1_i128_mul(&res, INT64_MAX, INT64_MAX); | |
| secp256k1_i128_accum_mul(&res, INT64_MAX, INT64_MAX); | |
| CHECK(secp256k1_i128_to_u64(&res) == 2); | |
| secp256k1_i128_accum_mul(&res, 4, 9223372036854775807); | |
| secp256k1_i128_accum_mul(&res, 1, 1); | |
| CHECK(secp256k1_i128_to_u64(&res) == UINT64_MAX); | |
| secp256k1_i128_rshift(&res, 64); | |
| CHECK(secp256k1_i128_to_i64(&res) == INT64_MAX); | |
| | |
| /* Compute INT128_MIN = - 2^127 with secp256k1_i128_accum_mul */ | |
| secp256k1_i128_mul(&res, INT64_MAX, INT64_MIN); | |
| CHECK(secp256k1_i128_to_u64(&res) == (uint64_t)INT64_MIN); | |
| secp256k1_i128_accum_mul(&res, INT64_MAX, INT64_MIN); | |
| CHECK(secp256k1_i128_to_u64(&res) == 0); | |
| secp256k1_i128_accum_mul(&res, 2, INT64_MIN); | |
| CHECK(secp256k1_i128_to_u64(&res) == 0); | |
| secp256k1_i128_rshift(&res, 64); | |
| CHECK(secp256k1_i128_to_i64(&res) == INT64_MIN); | |
| } | |
| { | |
| /* Randomized tests. */ | |
| int i; | |
| for (i = 0; i < 256 * COUNT; ++i) run_int128_test_case(); | |
| } | |
| } | |
| #endif | |
| | |
| /***** SCALAR TESTS *****/ | |
| | |
| static void scalar_test(void) { | |
| secp256k1_scalar s; | |
| secp256k1_scalar s1; | |
| secp256k1_scalar s2; | |
| unsigned char c[32]; | |
| | |
| /* Set 's' to a random scalar, with value 'snum'. */ | |
| testutil_random_scalar_order_test(&s); | |
| | |
| /* Set 's1' to a random scalar, with value 's1num'. */ | |
| testutil_random_scalar_order_test(&s1); | |
| | |
| /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */ | |
| testutil_random_scalar_order_test(&s2); | |
| secp256k1_scalar_get_b32(c, &s2); | |
| | |
| { | |
| int i; | |
| /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */ | |
| secp256k1_scalar n; | |
| secp256k1_scalar_set_int(&n, 0); | |
| for (i = 0; i < 256; i += 4) { | |
| secp256k1_scalar t; | |
| int j; | |
| secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_limb32(&s, 256 - 4 - i, 4)); | |
| for (j = 0; j < 4; j++) { | |
| secp256k1_scalar_add(&n, &n, &n); | |
| } | |
| secp256k1_scalar_add(&n, &n, &t); | |
| } | |
| CHECK(secp256k1_scalar_eq(&n, &s)); | |
| } | |
| | |
| { | |
| /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */ | |
| secp256k1_scalar n; | |
| int i = 0; | |
| secp256k1_scalar_set_int(&n, 0); | |
| while (i < 256) { | |
| secp256k1_scalar t; | |
| int j; | |
| int now = testrand_int(15) + 1; | |
| if (now + i > 256) { | |
| now = 256 - i; | |
| } | |
| secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now)); | |
| for (j = 0; j < now; j++) { | |
| secp256k1_scalar_add(&n, &n, &n); | |
| } | |
| secp256k1_scalar_add(&n, &n, &t); | |
| i += now; | |
| } | |
| CHECK(secp256k1_scalar_eq(&n, &s)); | |
| } | |
| | |
| { | |
| /* Test commutativity of add. */ | |
| secp256k1_scalar r1, r2; | |
| secp256k1_scalar_add(&r1, &s1, &s2); | |
| secp256k1_scalar_add(&r2, &s2, &s1); | |
| CHECK(secp256k1_scalar_eq(&r1, &r2)); | |
| } | |
| | |
| { | |
| secp256k1_scalar r1, r2; | |
| secp256k1_scalar b; | |
| int i; | |
| /* Test add_bit. */ | |
| int bit = testrand_bits(8); | |
| secp256k1_scalar_set_int(&b, 1); | |
| CHECK(secp256k1_scalar_is_one(&b)); | |
| for (i = 0; i < bit; i++) { | |
| secp256k1_scalar_add(&b, &b, &b); | |
| } | |
| r1 = s1; | |
| r2 = s1; | |
| if (!secp256k1_scalar_add(&r1, &r1, &b)) { | |
| /* No overflow happened. */ | |
| secp256k1_scalar_cadd_bit(&r2, bit, 1); | |
| CHECK(secp256k1_scalar_eq(&r1, &r2)); | |
| /* cadd is a noop when flag is zero */ | |
| secp256k1_scalar_cadd_bit(&r2, bit, 0); | |
| CHECK(secp256k1_scalar_eq(&r1, &r2)); | |
| } | |
| } | |
| | |
| { | |
| /* Test commutativity of mul. */ | |
| secp256k1_scalar r1, r2; | |
| secp256k1_scalar_mul(&r1, &s1, &s2); | |
| secp256k1_scalar_mul(&r2, &s2, &s1); | |
| CHECK(secp256k1_scalar_eq(&r1, &r2)); | |
| } | |
| | |
| { | |
| /* Test associativity of add. */ | |
| secp256k1_scalar r1, r2; | |
| secp256k1_scalar_add(&r1, &s1, &s2); | |
| secp256k1_scalar_add(&r1, &r1, &s); | |
| secp256k1_scalar_add(&r2, &s2, &s); | |
| secp256k1_scalar_add(&r2, &s1, &r2); | |
| CHECK(secp256k1_scalar_eq(&r1, &r2)); | |
| } | |
| | |
| { | |
| /* Test associativity of mul. */ | |
| secp256k1_scalar r1, r2; | |
| secp256k1_scalar_mul(&r1, &s1, &s2); | |
| secp256k1_scalar_mul(&r1, &r1, &s); | |
| secp256k1_scalar_mul(&r2, &s2, &s); | |
| secp256k1_scalar_mul(&r2, &s1, &r2); | |
| CHECK(secp256k1_scalar_eq(&r1, &r2)); | |
| } | |
| | |
| { | |
| /* Test distributitivity of mul over add. */ | |
| secp256k1_scalar r1, r2, t; | |
| secp256k1_scalar_add(&r1, &s1, &s2); | |
| secp256k1_scalar_mul(&r1, &r1, &s); | |
| secp256k1_scalar_mul(&r2, &s1, &s); | |
| secp256k1_scalar_mul(&t, &s2, &s); | |
| secp256k1_scalar_add(&r2, &r2, &t); | |
| CHECK(secp256k1_scalar_eq(&r1, &r2)); | |
| } | |
| | |
| { | |
| /* Test multiplicative identity. */ | |
| secp256k1_scalar r1; | |
| secp256k1_scalar_mul(&r1, &s1, &secp256k1_scalar_one); | |
| CHECK(secp256k1_scalar_eq(&r1, &s1)); | |
| } | |
| | |
| { | |
| /* Test additive identity. */ | |
| secp256k1_scalar r1; | |
| secp256k1_scalar_add(&r1, &s1, &secp256k1_scalar_zero); | |
| CHECK(secp256k1_scalar_eq(&r1, &s1)); | |
| } | |
| | |
| { | |
| /* Test zero product property. */ | |
| secp256k1_scalar r1; | |
| secp256k1_scalar_mul(&r1, &s1, &secp256k1_scalar_zero); | |
| CHECK(secp256k1_scalar_eq(&r1, &secp256k1_scalar_zero)); | |
| } | |
| | |
| { | |
| /* Test halving. */ | |
| secp256k1_scalar r; | |
| secp256k1_scalar_add(&r, &s, &s); | |
| secp256k1_scalar_half(&r, &r); | |
| CHECK(secp256k1_scalar_eq(&r, &s)); | |
| } | |
| } | |
| | |
| static void run_scalar_set_b32_seckey_tests(void) { | |
| unsigned char b32[32]; | |
| secp256k1_scalar s1; | |
| secp256k1_scalar s2; | |
| | |
| /* Usually set_b32 and set_b32_seckey give the same result */ | |
| testutil_random_scalar_order_b32(b32); | |
| secp256k1_scalar_set_b32(&s1, b32, NULL); | |
| CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 1); | |
| CHECK(secp256k1_scalar_eq(&s1, &s2) == 1); | |
| | |
| memset(b32, 0, sizeof(b32)); | |
| CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 0); | |
| memset(b32, 0xFF, sizeof(b32)); | |
| CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 0); | |
| } | |
| | |
| static void run_scalar_tests(void) { | |
| int i; | |
| for (i = 0; i < 128 * COUNT; i++) { | |
| scalar_test(); | |
| } | |
| for (i = 0; i < COUNT; i++) { | |
| run_scalar_set_b32_seckey_tests(); | |
| } | |
| | |
| { | |
| /* Check that the scalar constants secp256k1_scalar_zero and | |
| secp256k1_scalar_one contain the expected values. */ | |
| secp256k1_scalar zero, one; | |
| | |
| CHECK(secp256k1_scalar_is_zero(&secp256k1_scalar_zero)); | |
| secp256k1_scalar_set_int(&zero, 0); | |
| CHECK(secp256k1_scalar_eq(&zero, &secp256k1_scalar_zero)); | |
| | |
| CHECK(secp256k1_scalar_is_one(&secp256k1_scalar_one)); | |
| secp256k1_scalar_set_int(&one, 1); | |
| CHECK(secp256k1_scalar_eq(&one, &secp256k1_scalar_one)); | |
| } | |
| | |
| { | |
| /* (-1)+1 should be zero. */ | |
| secp256k1_scalar o; | |
| secp256k1_scalar_negate(&o, &secp256k1_scalar_one); | |
| secp256k1_scalar_add(&o, &o, &secp256k1_scalar_one); | |
| CHECK(secp256k1_scalar_is_zero(&o)); | |
| secp256k1_scalar_negate(&o, &o); | |
| CHECK(secp256k1_scalar_is_zero(&o)); | |
| } | |
| | |
| { | |
| /* Test that halving and doubling roundtrips on some fixed values. */ | |
| static const secp256k1_scalar HALF_TESTS[] = { | |
| /* 0 */ | |
| SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0), | |
| /* 1 */ | |
| SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1), | |
| /* -1 */ | |
| SECP256K1_SCALAR_CONST(0xfffffffful, 0xfffffffful, 0xfffffffful, 0xfffffffeul, 0xbaaedce6ul, 0xaf48a03bul, 0xbfd25e8cul, 0xd0364140ul), | |
| /* -2 (largest odd value) */ | |
| SECP256K1_SCALAR_CONST(0xfffffffful, 0xfffffffful, 0xfffffffful, 0xfffffffeul, 0xbaaedce6ul, 0xaf48a03bul, 0xbfd25e8cul, 0xd036413Ful), | |
| /* Half the secp256k1 order */ | |
| SECP256K1_SCALAR_CONST(0x7ffffffful, 0xfffffffful, 0xfffffffful, 0xfffffffful, 0x5d576e73ul, 0x57a4501dul, 0xdfe92f46ul, 0x681b20a0ul), | |
| /* Half the secp256k1 order + 1 */ | |
| SECP256K1_SCALAR_CONST(0x7ffffffful, 0xfffffffful, 0xfffffffful, 0xfffffffful, 0x5d576e73ul, 0x57a4501dul, 0xdfe92f46ul, 0x681b20a1ul), | |
| /* 2^255 */ | |
| SECP256K1_SCALAR_CONST(0x80000000ul, 0, 0, 0, 0, 0, 0, 0), | |
| /* 2^255 - 1 */ | |
| SECP256K1_SCALAR_CONST(0x7ffffffful, 0xfffffffful, 0xfffffffful, 0xfffffffful, 0xfffffffful, 0xfffffffful, 0xfffffffful, 0xfffffffful), | |
| }; | |
| unsigned n; | |
| for (n = 0; n < sizeof(HALF_TESTS) / sizeof(HALF_TESTS[0]); ++n) { | |
| secp256k1_scalar s; | |
| secp256k1_scalar_half(&s, &HALF_TESTS[n]); | |
| secp256k1_scalar_add(&s, &s, &s); | |
| CHECK(secp256k1_scalar_eq(&s, &HALF_TESTS[n])); | |
| secp256k1_scalar_add(&s, &s, &s); | |
| secp256k1_scalar_half(&s, &s); | |
| CHECK(secp256k1_scalar_eq(&s, &HALF_TESTS[n])); | |
| } | |
| } | |
| | |
| { | |
| /* Does check_overflow check catch all ones? */ | |
| static const secp256k1_scalar overflowed = SECP256K1_SCALAR_CONST( | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL | |
| ); | |
| CHECK(secp256k1_scalar_check_overflow(&overflowed)); | |
| } | |
| | |
| { | |
| /* Static test vectors. | |
| * These were reduced from ~10^12 random vectors based on comparison-decision | |
| * and edge-case coverage on 32-bit and 64-bit implementations. | |
| * The responses were generated with Sage 5.9. | |
| */ | |
| secp256k1_scalar x; | |
| secp256k1_scalar y; | |
| secp256k1_scalar z; | |
| secp256k1_scalar zz; | |
| secp256k1_scalar r1; | |
| secp256k1_scalar r2; | |
| secp256k1_scalar zzv; | |
| int overflow; | |
| unsigned char chal[33][2][32] = { | |
| {{0xff, 0xff, 0x03, 0x07, 0x00, 0x00, 0x00, 0x00, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, | |
| 0xff, 0xff, 0x03, 0x00, 0xc0, 0xff, 0xff, 0xff}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff}}, | |
| {{0xef, 0xff, 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | |
| {0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, | |
| 0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0x7f, 0x00, 0x80, 0xff}}, | |
| {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, | |
| 0x80, 0x00, 0x00, 0x80, 0xff, 0x3f, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0x00}, | |
| {0x00, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff, 0x80, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0xe0, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x7f, 0xff, 0xff, 0xff}}, | |
| {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x00, 0x1e, 0xf8, 0xff, 0xff, 0xff, 0xfd, 0xff}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, | |
| 0x00, 0x00, 0x00, 0xf8, 0xff, 0x03, 0x00, 0xe0, | |
| 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0xf0, 0xff, | |
| 0xf3, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}}, | |
| {{0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0x00, | |
| 0x00, 0x1c, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, | |
| 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0x1f, 0x00, 0x00, 0x80, 0xff, 0xff, 0x3f, | |
| 0x00, 0xfe, 0xff, 0xff, 0xff, 0xdf, 0xff, 0xff}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0x00, 0x0f, 0xfc, 0x9f, | |
| 0xff, 0xff, 0xff, 0x00, 0x80, 0x00, 0x00, 0x80, | |
| 0xff, 0x0f, 0xfc, 0xff, 0x7f, 0x00, 0x00, 0x00, | |
| 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}, | |
| {0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, | |
| 0x00, 0x00, 0xf8, 0xff, 0x0f, 0xc0, 0xff, 0xff, | |
| 0xff, 0x1f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0x07, 0x80, 0xff, 0xff, 0xff}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, | |
| 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, | |
| 0xf7, 0xff, 0xff, 0xef, 0xff, 0xff, 0xff, 0x00, | |
| 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xf0}, | |
| {0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}, | |
| {{0x00, 0xf8, 0xff, 0x03, 0xff, 0xff, 0xff, 0x00, | |
| 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0x03, 0xc0, 0xff, 0x0f, 0xfc, 0xff}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xe0, 0xff, 0xff, | |
| 0xff, 0x01, 0x00, 0x00, 0x00, 0x3f, 0x00, 0xc0, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}, | |
| {{0x8f, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0x7f, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, | |
| {{0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0x03, 0x00, 0x80, 0x00, 0x00, 0x80, | |
| 0xff, 0xff, 0xff, 0x00, 0x00, 0x80, 0xff, 0x7f}, | |
| {0xff, 0xcf, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, | |
| 0x00, 0xc0, 0xff, 0xcf, 0xff, 0xff, 0xff, 0xff, | |
| 0xbf, 0xff, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x80, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00}}, | |
| {{0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, | |
| 0xff, 0xff, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0x00, 0x80, 0x00, 0x00, 0x80, | |
| 0xff, 0x01, 0xfc, 0xff, 0x01, 0x00, 0xfe, 0xff}, | |
| {0xff, 0xff, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00}}, | |
| {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0x7f, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80}, | |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0xf8, 0xff, 0x01, 0x00, 0xf0, 0xff, 0xff, | |
| 0xe0, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0x00}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, | |
| 0xfc, 0xff, 0xff, 0x3f, 0xf0, 0xff, 0xff, 0x3f, | |
| 0x00, 0x00, 0xf8, 0x07, 0x00, 0x00, 0x00, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0x0f, 0x7e, 0x00, 0x00}}, | |
| {{0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0x1f, 0x00, 0x00, 0xfe, 0x07, 0x00}, | |
| {0x00, 0x00, 0x00, 0xf0, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xfb, 0xff, 0x07, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60}}, | |
| {{0xff, 0x01, 0x00, 0xff, 0xff, 0xff, 0x0f, 0x00, | |
| 0x80, 0x7f, 0xfe, 0xff, 0xff, 0xff, 0xff, 0x03, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | |
| {0xff, 0xff, 0x1f, 0x00, 0xf0, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, 0x00, 0x00}}, | |
| {{0x80, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, | |
| 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0xc0, 0xff, 0xff, 0xcf, 0xff, 0x1f, 0x00, 0x00, | |
| 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80}, | |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x7e, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, | |
| {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x00}, | |
| {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, | |
| 0xff, 0xff, 0x7f, 0x00, 0x80, 0x00, 0x00, 0x00, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x80, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}, | |
| {0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, 0x80, | |
| 0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, | |
| 0xff, 0x7f, 0xf8, 0xff, 0xff, 0x1f, 0x00, 0xfe}}, | |
| {{0xff, 0xff, 0xff, 0x3f, 0xf8, 0xff, 0xff, 0xff, | |
| 0xff, 0x03, 0xfe, 0x01, 0x00, 0x00, 0x00, 0x00, | |
| 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, | |
| 0xff, 0xff, 0xff, 0xff, 0x01, 0x80, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}}, | |
| {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, | |
| 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, | |
| 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40}}, | |
| {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, | |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, | |
| {{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | |
| {0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0xc0, | |
| 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, 0x00, | |
| 0xf0, 0xff, 0xff, 0xff, 0xff, 0x07, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0x01, 0xff, 0xff, 0xff}}, | |
| {{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, | |
| 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, | |
| 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40}, | |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0x7e, 0x00, 0x00, 0xc0, 0xff, 0xff, 0x07, 0x00, | |
| 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, | |
| 0xfc, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | |
| {0xff, 0x01, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x80, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, 0x00, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}, | |
| {{0xff, 0xff, 0xf0, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, | |
| 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff}, | |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, | |
| 0xff, 0xff, 0x3f, 0x00, 0xf8, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0x3f, 0x00, 0x00, 0xc0, 0xf1, 0x7f, 0x00}}, | |
| {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0x00}, | |
| {0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, | |
| 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x80, 0x1f, | |
| 0x00, 0x00, 0xfc, 0xff, 0xff, 0x01, 0xff, 0xff}}, | |
| {{0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x80, 0x00, 0x00, 0x80, 0xff, 0x03, 0xe0, 0x01, | |
| 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0xfc, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}, | |
| {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, | |
| 0xfe, 0xff, 0xff, 0xf0, 0x07, 0x00, 0x3c, 0x80, | |
| 0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0x07, 0xe0, 0xff, 0x00, 0x00, 0x00}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0xfc, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0xf8, | |
| 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80}, | |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0x0c, 0x80, 0x00, | |
| 0x00, 0x00, 0x00, 0xc0, 0x7f, 0xfe, 0xff, 0x1f, | |
| 0x00, 0xfe, 0xff, 0x03, 0x00, 0x00, 0xfe, 0xff}}, | |
| {{0xff, 0xff, 0x81, 0xff, 0xff, 0xff, 0xff, 0x00, | |
| 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x83, | |
| 0xff, 0xff, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80, | |
| 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00, 0xf0}, | |
| {0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x00, | |
| 0xf8, 0x07, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xc7, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff}}, | |
| {{0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00, | |
| 0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb, | |
| 0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03}, | |
| {0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00, | |
| 0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb, | |
| 0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03}} | |
| }; | |
| unsigned char res[33][2][32] = { | |
| {{0x0c, 0x3b, 0x0a, 0xca, 0x8d, 0x1a, 0x2f, 0xb9, | |
| 0x8a, 0x7b, 0x53, 0x5a, 0x1f, 0xc5, 0x22, 0xa1, | |
| 0x07, 0x2a, 0x48, 0xea, 0x02, 0xeb, 0xb3, 0xd6, | |
| 0x20, 0x1e, 0x86, 0xd0, 0x95, 0xf6, 0x92, 0x35}, | |
| {0xdc, 0x90, 0x7a, 0x07, 0x2e, 0x1e, 0x44, 0x6d, | |
| 0xf8, 0x15, 0x24, 0x5b, 0x5a, 0x96, 0x37, 0x9c, | |
| 0x37, 0x7b, 0x0d, 0xac, 0x1b, 0x65, 0x58, 0x49, | |
| 0x43, 0xb7, 0x31, 0xbb, 0xa7, 0xf4, 0x97, 0x15}}, | |
| {{0xf1, 0xf7, 0x3a, 0x50, 0xe6, 0x10, 0xba, 0x22, | |
| 0x43, 0x4d, 0x1f, 0x1f, 0x7c, 0x27, 0xca, 0x9c, | |
| 0xb8, 0xb6, 0xa0, 0xfc, 0xd8, 0xc0, 0x05, 0x2f, | |
| 0xf7, 0x08, 0xe1, 0x76, 0xdd, 0xd0, 0x80, 0xc8}, | |
| {0xe3, 0x80, 0x80, 0xb8, 0xdb, 0xe3, 0xa9, 0x77, | |
| 0x00, 0xb0, 0xf5, 0x2e, 0x27, 0xe2, 0x68, 0xc4, | |
| 0x88, 0xe8, 0x04, 0xc1, 0x12, 0xbf, 0x78, 0x59, | |
| 0xe6, 0xa9, 0x7c, 0xe1, 0x81, 0xdd, 0xb9, 0xd5}}, | |
| {{0x96, 0xe2, 0xee, 0x01, 0xa6, 0x80, 0x31, 0xef, | |
| 0x5c, 0xd0, 0x19, 0xb4, 0x7d, 0x5f, 0x79, 0xab, | |
| 0xa1, 0x97, 0xd3, 0x7e, 0x33, 0xbb, 0x86, 0x55, | |
| 0x60, 0x20, 0x10, 0x0d, 0x94, 0x2d, 0x11, 0x7c}, | |
| {0xcc, 0xab, 0xe0, 0xe8, 0x98, 0x65, 0x12, 0x96, | |
| 0x38, 0x5a, 0x1a, 0xf2, 0x85, 0x23, 0x59, 0x5f, | |
| 0xf9, 0xf3, 0xc2, 0x81, 0x70, 0x92, 0x65, 0x12, | |
| 0x9c, 0x65, 0x1e, 0x96, 0x00, 0xef, 0xe7, 0x63}}, | |
| {{0xac, 0x1e, 0x62, 0xc2, 0x59, 0xfc, 0x4e, 0x5c, | |
| 0x83, 0xb0, 0xd0, 0x6f, 0xce, 0x19, 0xf6, 0xbf, | |
| 0xa4, 0xb0, 0xe0, 0x53, 0x66, 0x1f, 0xbf, 0xc9, | |
| 0x33, 0x47, 0x37, 0xa9, 0x3d, 0x5d, 0xb0, 0x48}, | |
| {0x86, 0xb9, 0x2a, 0x7f, 0x8e, 0xa8, 0x60, 0x42, | |
| 0x26, 0x6d, 0x6e, 0x1c, 0xa2, 0xec, 0xe0, 0xe5, | |
| 0x3e, 0x0a, 0x33, 0xbb, 0x61, 0x4c, 0x9f, 0x3c, | |
| 0xd1, 0xdf, 0x49, 0x33, 0xcd, 0x72, 0x78, 0x18}}, | |
| {{0xf7, 0xd3, 0xcd, 0x49, 0x5c, 0x13, 0x22, 0xfb, | |
| 0x2e, 0xb2, 0x2f, 0x27, 0xf5, 0x8a, 0x5d, 0x74, | |
| 0xc1, 0x58, 0xc5, 0xc2, 0x2d, 0x9f, 0x52, 0xc6, | |
| 0x63, 0x9f, 0xba, 0x05, 0x76, 0x45, 0x7a, 0x63}, | |
| {0x8a, 0xfa, 0x55, 0x4d, 0xdd, 0xa3, 0xb2, 0xc3, | |
| 0x44, 0xfd, 0xec, 0x72, 0xde, 0xef, 0xc0, 0x99, | |
| 0xf5, 0x9f, 0xe2, 0x52, 0xb4, 0x05, 0x32, 0x58, | |
| 0x57, 0xc1, 0x8f, 0xea, 0xc3, 0x24, 0x5b, 0x94}}, | |
| {{0x05, 0x83, 0xee, 0xdd, 0x64, 0xf0, 0x14, 0x3b, | |
| 0xa0, 0x14, 0x4a, 0x3a, 0x41, 0x82, 0x7c, 0xa7, | |
| 0x2c, 0xaa, 0xb1, 0x76, 0xbb, 0x59, 0x64, 0x5f, | |
| 0x52, 0xad, 0x25, 0x29, 0x9d, 0x8f, 0x0b, 0xb0}, | |
| {0x7e, 0xe3, 0x7c, 0xca, 0xcd, 0x4f, 0xb0, 0x6d, | |
| 0x7a, 0xb2, 0x3e, 0xa0, 0x08, 0xb9, 0xa8, 0x2d, | |
| 0xc2, 0xf4, 0x99, 0x66, 0xcc, 0xac, 0xd8, 0xb9, | |
| 0x72, 0x2a, 0x4a, 0x3e, 0x0f, 0x7b, 0xbf, 0xf4}}, | |
| {{0x8c, 0x9c, 0x78, 0x2b, 0x39, 0x61, 0x7e, 0xf7, | |
| 0x65, 0x37, 0x66, 0x09, 0x38, 0xb9, 0x6f, 0x70, | |
| 0x78, 0x87, 0xff, 0xcf, 0x93, 0xca, 0x85, 0x06, | |
| 0x44, 0x84, 0xa7, 0xfe, 0xd3, 0xa4, 0xe3, 0x7e}, | |
| {0xa2, 0x56, 0x49, 0x23, 0x54, 0xa5, 0x50, 0xe9, | |
| 0x5f, 0xf0, 0x4d, 0xe7, 0xdc, 0x38, 0x32, 0x79, | |
| 0x4f, 0x1c, 0xb7, 0xe4, 0xbb, 0xf8, 0xbb, 0x2e, | |
| 0x40, 0x41, 0x4b, 0xcc, 0xe3, 0x1e, 0x16, 0x36}}, | |
| {{0x0c, 0x1e, 0xd7, 0x09, 0x25, 0x40, 0x97, 0xcb, | |
| 0x5c, 0x46, 0xa8, 0xda, 0xef, 0x25, 0xd5, 0xe5, | |
| 0x92, 0x4d, 0xcf, 0xa3, 0xc4, 0x5d, 0x35, 0x4a, | |
| 0xe4, 0x61, 0x92, 0xf3, 0xbf, 0x0e, 0xcd, 0xbe}, | |
| {0xe4, 0xaf, 0x0a, 0xb3, 0x30, 0x8b, 0x9b, 0x48, | |
| 0x49, 0x43, 0xc7, 0x64, 0x60, 0x4a, 0x2b, 0x9e, | |
| 0x95, 0x5f, 0x56, 0xe8, 0x35, 0xdc, 0xeb, 0xdc, | |
| 0xc7, 0xc4, 0xfe, 0x30, 0x40, 0xc7, 0xbf, 0xa4}}, | |
| {{0xd4, 0xa0, 0xf5, 0x81, 0x49, 0x6b, 0xb6, 0x8b, | |
| 0x0a, 0x69, 0xf9, 0xfe, 0xa8, 0x32, 0xe5, 0xe0, | |
| 0xa5, 0xcd, 0x02, 0x53, 0xf9, 0x2c, 0xe3, 0x53, | |
| 0x83, 0x36, 0xc6, 0x02, 0xb5, 0xeb, 0x64, 0xb8}, | |
| {0x1d, 0x42, 0xb9, 0xf9, 0xe9, 0xe3, 0x93, 0x2c, | |
| 0x4c, 0xee, 0x6c, 0x5a, 0x47, 0x9e, 0x62, 0x01, | |
| 0x6b, 0x04, 0xfe, 0xa4, 0x30, 0x2b, 0x0d, 0x4f, | |
| 0x71, 0x10, 0xd3, 0x55, 0xca, 0xf3, 0x5e, 0x80}}, | |
| {{0x77, 0x05, 0xf6, 0x0c, 0x15, 0x9b, 0x45, 0xe7, | |
| 0xb9, 0x11, 0xb8, 0xf5, 0xd6, 0xda, 0x73, 0x0c, | |
| 0xda, 0x92, 0xea, 0xd0, 0x9d, 0xd0, 0x18, 0x92, | |
| 0xce, 0x9a, 0xaa, 0xee, 0x0f, 0xef, 0xde, 0x30}, | |
| {0xf1, 0xf1, 0xd6, 0x9b, 0x51, 0xd7, 0x77, 0x62, | |
| 0x52, 0x10, 0xb8, 0x7a, 0x84, 0x9d, 0x15, 0x4e, | |
| 0x07, 0xdc, 0x1e, 0x75, 0x0d, 0x0c, 0x3b, 0xdb, | |
| 0x74, 0x58, 0x62, 0x02, 0x90, 0x54, 0x8b, 0x43}}, | |
| {{0xa6, 0xfe, 0x0b, 0x87, 0x80, 0x43, 0x67, 0x25, | |
| 0x57, 0x5d, 0xec, 0x40, 0x50, 0x08, 0xd5, 0x5d, | |
| 0x43, 0xd7, 0xe0, 0xaa, 0xe0, 0x13, 0xb6, 0xb0, | |
| 0xc0, 0xd4, 0xe5, 0x0d, 0x45, 0x83, 0xd6, 0x13}, | |
| {0x40, 0x45, 0x0a, 0x92, 0x31, 0xea, 0x8c, 0x60, | |
| 0x8c, 0x1f, 0xd8, 0x76, 0x45, 0xb9, 0x29, 0x00, | |
| 0x26, 0x32, 0xd8, 0xa6, 0x96, 0x88, 0xe2, 0xc4, | |
| 0x8b, 0xdb, 0x7f, 0x17, 0x87, 0xcc, 0xc8, 0xf2}}, | |
| {{0xc2, 0x56, 0xe2, 0xb6, 0x1a, 0x81, 0xe7, 0x31, | |
| 0x63, 0x2e, 0xbb, 0x0d, 0x2f, 0x81, 0x67, 0xd4, | |
| 0x22, 0xe2, 0x38, 0x02, 0x25, 0x97, 0xc7, 0x88, | |
| 0x6e, 0xdf, 0xbe, 0x2a, 0xa5, 0x73, 0x63, 0xaa}, | |
| {0x50, 0x45, 0xe2, 0xc3, 0xbd, 0x89, 0xfc, 0x57, | |
| 0xbd, 0x3c, 0xa3, 0x98, 0x7e, 0x7f, 0x36, 0x38, | |
| 0x92, 0x39, 0x1f, 0x0f, 0x81, 0x1a, 0x06, 0x51, | |
| 0x1f, 0x8d, 0x6a, 0xff, 0x47, 0x16, 0x06, 0x9c}}, | |
| {{0x33, 0x95, 0xa2, 0x6f, 0x27, 0x5f, 0x9c, 0x9c, | |
| 0x64, 0x45, 0xcb, 0xd1, 0x3c, 0xee, 0x5e, 0x5f, | |
| 0x48, 0xa6, 0xaf, 0xe3, 0x79, 0xcf, 0xb1, 0xe2, | |
| 0xbf, 0x55, 0x0e, 0xa2, 0x3b, 0x62, 0xf0, 0xe4}, | |
| {0x14, 0xe8, 0x06, 0xe3, 0xbe, 0x7e, 0x67, 0x01, | |
| 0xc5, 0x21, 0x67, 0xd8, 0x54, 0xb5, 0x7f, 0xa4, | |
| 0xf9, 0x75, 0x70, 0x1c, 0xfd, 0x79, 0xdb, 0x86, | |
| 0xad, 0x37, 0x85, 0x83, 0x56, 0x4e, 0xf0, 0xbf}}, | |
| {{0xbc, 0xa6, 0xe0, 0x56, 0x4e, 0xef, 0xfa, 0xf5, | |
| 0x1d, 0x5d, 0x3f, 0x2a, 0x5b, 0x19, 0xab, 0x51, | |
| 0xc5, 0x8b, 0xdd, 0x98, 0x28, 0x35, 0x2f, 0xc3, | |
| 0x81, 0x4f, 0x5c, 0xe5, 0x70, 0xb9, 0xeb, 0x62}, | |
| {0xc4, 0x6d, 0x26, 0xb0, 0x17, 0x6b, 0xfe, 0x6c, | |
| 0x12, 0xf8, 0xe7, 0xc1, 0xf5, 0x2f, 0xfa, 0x91, | |
| 0x13, 0x27, 0xbd, 0x73, 0xcc, 0x33, 0x31, 0x1c, | |
| 0x39, 0xe3, 0x27, 0x6a, 0x95, 0xcf, 0xc5, 0xfb}}, | |
| {{0x30, 0xb2, 0x99, 0x84, 0xf0, 0x18, 0x2a, 0x6e, | |
| 0x1e, 0x27, 0xed, 0xa2, 0x29, 0x99, 0x41, 0x56, | |
| 0xe8, 0xd4, 0x0d, 0xef, 0x99, 0x9c, 0xf3, 0x58, | |
| 0x29, 0x55, 0x1a, 0xc0, 0x68, 0xd6, 0x74, 0xa4}, | |
| {0x07, 0x9c, 0xe7, 0xec, 0xf5, 0x36, 0x73, 0x41, | |
| 0xa3, 0x1c, 0xe5, 0x93, 0x97, 0x6a, 0xfd, 0xf7, | |
| 0x53, 0x18, 0xab, 0xaf, 0xeb, 0x85, 0xbd, 0x92, | |
| 0x90, 0xab, 0x3c, 0xbf, 0x30, 0x82, 0xad, 0xf6}}, | |
| {{0xc6, 0x87, 0x8a, 0x2a, 0xea, 0xc0, 0xa9, 0xec, | |
| 0x6d, 0xd3, 0xdc, 0x32, 0x23, 0xce, 0x62, 0x19, | |
| 0xa4, 0x7e, 0xa8, 0xdd, 0x1c, 0x33, 0xae, 0xd3, | |
| 0x4f, 0x62, 0x9f, 0x52, 0xe7, 0x65, 0x46, 0xf4}, | |
| {0x97, 0x51, 0x27, 0x67, 0x2d, 0xa2, 0x82, 0x87, | |
| 0x98, 0xd3, 0xb6, 0x14, 0x7f, 0x51, 0xd3, 0x9a, | |
| 0x0b, 0xd0, 0x76, 0x81, 0xb2, 0x4f, 0x58, 0x92, | |
| 0xa4, 0x86, 0xa1, 0xa7, 0x09, 0x1d, 0xef, 0x9b}}, | |
| {{0xb3, 0x0f, 0x2b, 0x69, 0x0d, 0x06, 0x90, 0x64, | |
| 0xbd, 0x43, 0x4c, 0x10, 0xe8, 0x98, 0x1c, 0xa3, | |
| 0xe1, 0x68, 0xe9, 0x79, 0x6c, 0x29, 0x51, 0x3f, | |
| 0x41, 0xdc, 0xdf, 0x1f, 0xf3, 0x60, 0xbe, 0x33}, | |
| {0xa1, 0x5f, 0xf7, 0x1d, 0xb4, 0x3e, 0x9b, 0x3c, | |
| 0xe7, 0xbd, 0xb6, 0x06, 0xd5, 0x60, 0x06, 0x6d, | |
| 0x50, 0xd2, 0xf4, 0x1a, 0x31, 0x08, 0xf2, 0xea, | |
| 0x8e, 0xef, 0x5f, 0x7d, 0xb6, 0xd0, 0xc0, 0x27}}, | |
| {{0x62, 0x9a, 0xd9, 0xbb, 0x38, 0x36, 0xce, 0xf7, | |
| 0x5d, 0x2f, 0x13, 0xec, 0xc8, 0x2d, 0x02, 0x8a, | |
| 0x2e, 0x72, 0xf0, 0xe5, 0x15, 0x9d, 0x72, 0xae, | |
| 0xfc, 0xb3, 0x4f, 0x02, 0xea, 0xe1, 0x09, 0xfe}, | |
| {0x00, 0x00, 0x00, 0x00, 0xfa, 0x0a, 0x3d, 0xbc, | |
| 0xad, 0x16, 0x0c, 0xb6, 0xe7, 0x7c, 0x8b, 0x39, | |
| 0x9a, 0x43, 0xbb, 0xe3, 0xc2, 0x55, 0x15, 0x14, | |
| 0x75, 0xac, 0x90, 0x9b, 0x7f, 0x9a, 0x92, 0x00}}, | |
| {{0x8b, 0xac, 0x70, 0x86, 0x29, 0x8f, 0x00, 0x23, | |
| 0x7b, 0x45, 0x30, 0xaa, 0xb8, 0x4c, 0xc7, 0x8d, | |
| 0x4e, 0x47, 0x85, 0xc6, 0x19, 0xe3, 0x96, 0xc2, | |
| 0x9a, 0xa0, 0x12, 0xed, 0x6f, 0xd7, 0x76, 0x16}, | |
| {0x45, 0xaf, 0x7e, 0x33, 0xc7, 0x7f, 0x10, 0x6c, | |
| 0x7c, 0x9f, 0x29, 0xc1, 0xa8, 0x7e, 0x15, 0x84, | |
| 0xe7, 0x7d, 0xc0, 0x6d, 0xab, 0x71, 0x5d, 0xd0, | |
| 0x6b, 0x9f, 0x97, 0xab, 0xcb, 0x51, 0x0c, 0x9f}}, | |
| {{0x9e, 0xc3, 0x92, 0xb4, 0x04, 0x9f, 0xc8, 0xbb, | |
| 0xdd, 0x9e, 0xc6, 0x05, 0xfd, 0x65, 0xec, 0x94, | |
| 0x7f, 0x2c, 0x16, 0xc4, 0x40, 0xac, 0x63, 0x7b, | |
| 0x7d, 0xb8, 0x0c, 0xe4, 0x5b, 0xe3, 0xa7, 0x0e}, | |
| {0x43, 0xf4, 0x44, 0xe8, 0xcc, 0xc8, 0xd4, 0x54, | |
| 0x33, 0x37, 0x50, 0xf2, 0x87, 0x42, 0x2e, 0x00, | |
| 0x49, 0x60, 0x62, 0x02, 0xfd, 0x1a, 0x7c, 0xdb, | |
| 0x29, 0x6c, 0x6d, 0x54, 0x53, 0x08, 0xd1, 0xc8}}, | |
| {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, | |
| {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}}, | |
| {{0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1, | |
| 0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0, | |
| 0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59, | |
| 0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}, | |
| {0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1, | |
| 0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0, | |
| 0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59, | |
| 0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}}, | |
| {{0x28, 0x56, 0xac, 0x0e, 0x4f, 0x98, 0x09, 0xf0, | |
| 0x49, 0xfa, 0x7f, 0x84, 0xac, 0x7e, 0x50, 0x5b, | |
| 0x17, 0x43, 0x14, 0x89, 0x9c, 0x53, 0xa8, 0x94, | |
| 0x30, 0xf2, 0x11, 0x4d, 0x92, 0x14, 0x27, 0xe8}, | |
| {0x39, 0x7a, 0x84, 0x56, 0x79, 0x9d, 0xec, 0x26, | |
| 0x2c, 0x53, 0xc1, 0x94, 0xc9, 0x8d, 0x9e, 0x9d, | |
| 0x32, 0x1f, 0xdd, 0x84, 0x04, 0xe8, 0xe2, 0x0a, | |
| 0x6b, 0xbe, 0xbb, 0x42, 0x40, 0x67, 0x30, 0x6c}}, | |
| {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| 0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4, | |
| 0x40, 0x2d, 0xa1, 0x73, 0x2f, 0xc9, 0xbe, 0xbd}, | |
| {0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1, | |
| 0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0, | |
| 0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59, | |
| 0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}}, | |
| {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, | |
| 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, | |
| 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40}, | |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}}, | |
| {{0x1c, 0xc4, 0xf7, 0xda, 0x0f, 0x65, 0xca, 0x39, | |
| 0x70, 0x52, 0x92, 0x8e, 0xc3, 0xc8, 0x15, 0xea, | |
| 0x7f, 0x10, 0x9e, 0x77, 0x4b, 0x6e, 0x2d, 0xdf, | |
| 0xe8, 0x30, 0x9d, 0xda, 0xe8, 0x9a, 0x65, 0xae}, | |
| {0x02, 0xb0, 0x16, 0xb1, 0x1d, 0xc8, 0x57, 0x7b, | |
| 0xa2, 0x3a, 0xa2, 0xa3, 0x38, 0x5c, 0x8f, 0xeb, | |
| 0x66, 0x37, 0x91, 0xa8, 0x5f, 0xef, 0x04, 0xf6, | |
| 0x59, 0x75, 0xe1, 0xee, 0x92, 0xf6, 0x0e, 0x30}}, | |
| {{0x8d, 0x76, 0x14, 0xa4, 0x14, 0x06, 0x9f, 0x9a, | |
| 0xdf, 0x4a, 0x85, 0xa7, 0x6b, 0xbf, 0x29, 0x6f, | |
| 0xbc, 0x34, 0x87, 0x5d, 0xeb, 0xbb, 0x2e, 0xa9, | |
| 0xc9, 0x1f, 0x58, 0xd6, 0x9a, 0x82, 0xa0, 0x56}, | |
| {0xd4, 0xb9, 0xdb, 0x88, 0x1d, 0x04, 0xe9, 0x93, | |
| 0x8d, 0x3f, 0x20, 0xd5, 0x86, 0xa8, 0x83, 0x07, | |
| 0xdb, 0x09, 0xd8, 0x22, 0x1f, 0x7f, 0xf1, 0x71, | |
| 0xc8, 0xe7, 0x5d, 0x47, 0xaf, 0x8b, 0x72, 0xe9}}, | |
| {{0x83, 0xb9, 0x39, 0xb2, 0xa4, 0xdf, 0x46, 0x87, | |
| 0xc2, 0xb8, 0xf1, 0xe6, 0x4c, 0xd1, 0xe2, 0xa9, | |
| 0xe4, 0x70, 0x30, 0x34, 0xbc, 0x52, 0x7c, 0x55, | |
| 0xa6, 0xec, 0x80, 0xa4, 0xe5, 0xd2, 0xdc, 0x73}, | |
| {0x08, 0xf1, 0x03, 0xcf, 0x16, 0x73, 0xe8, 0x7d, | |
| 0xb6, 0x7e, 0x9b, 0xc0, 0xb4, 0xc2, 0xa5, 0x86, | |
| 0x02, 0x77, 0xd5, 0x27, 0x86, 0xa5, 0x15, 0xfb, | |
| 0xae, 0x9b, 0x8c, 0xa9, 0xf9, 0xf8, 0xa8, 0x4a}}, | |
| {{0x8b, 0x00, 0x49, 0xdb, 0xfa, 0xf0, 0x1b, 0xa2, | |
| 0xed, 0x8a, 0x9a, 0x7a, 0x36, 0x78, 0x4a, 0xc7, | |
| 0xf7, 0xad, 0x39, 0xd0, 0x6c, 0x65, 0x7a, 0x41, | |
| 0xce, 0xd6, 0xd6, 0x4c, 0x20, 0x21, 0x6b, 0xc7}, | |
| {0xc6, 0xca, 0x78, 0x1d, 0x32, 0x6c, 0x6c, 0x06, | |
| 0x91, 0xf2, 0x1a, 0xe8, 0x43, 0x16, 0xea, 0x04, | |
| 0x3c, 0x1f, 0x07, 0x85, 0xf7, 0x09, 0x22, 0x08, | |
| 0xba, 0x13, 0xfd, 0x78, 0x1e, 0x3f, 0x6f, 0x62}}, | |
| {{0x25, 0x9b, 0x7c, 0xb0, 0xac, 0x72, 0x6f, 0xb2, | |
| 0xe3, 0x53, 0x84, 0x7a, 0x1a, 0x9a, 0x98, 0x9b, | |
| 0x44, 0xd3, 0x59, 0xd0, 0x8e, 0x57, 0x41, 0x40, | |
| 0x78, 0xa7, 0x30, 0x2f, 0x4c, 0x9c, 0xb9, 0x68}, | |
| {0xb7, 0x75, 0x03, 0x63, 0x61, 0xc2, 0x48, 0x6e, | |
| 0x12, 0x3d, 0xbf, 0x4b, 0x27, 0xdf, 0xb1, 0x7a, | |
| 0xff, 0x4e, 0x31, 0x07, 0x83, 0xf4, 0x62, 0x5b, | |
| 0x19, 0xa5, 0xac, 0xa0, 0x32, 0x58, 0x0d, 0xa7}}, | |
| {{0x43, 0x4f, 0x10, 0xa4, 0xca, 0xdb, 0x38, 0x67, | |
| 0xfa, 0xae, 0x96, 0xb5, 0x6d, 0x97, 0xff, 0x1f, | |
| 0xb6, 0x83, 0x43, 0xd3, 0xa0, 0x2d, 0x70, 0x7a, | |
| 0x64, 0x05, 0x4c, 0xa7, 0xc1, 0xa5, 0x21, 0x51}, | |
| {0xe4, 0xf1, 0x23, 0x84, 0xe1, 0xb5, 0x9d, 0xf2, | |
| 0xb8, 0x73, 0x8b, 0x45, 0x2b, 0x35, 0x46, 0x38, | |
| 0x10, 0x2b, 0x50, 0xf8, 0x8b, 0x35, 0xcd, 0x34, | |
| 0xc8, 0x0e, 0xf6, 0xdb, 0x09, 0x35, 0xf0, 0xda}}, | |
| {{0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34, | |
| 0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13, | |
| 0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46, | |
| 0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5}, | |
| {0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34, | |
| 0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13, | |
| 0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46, | |
| 0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5}} | |
| }; | |
| for (i = 0; i < 33; i++) { | |
| secp256k1_scalar_set_b32(&x, chal[i][0], &overflow); | |
| CHECK(!overflow); | |
| secp256k1_scalar_set_b32(&y, chal[i][1], &overflow); | |
| CHECK(!overflow); | |
| secp256k1_scalar_set_b32(&r1, res[i][0], &overflow); | |
| CHECK(!overflow); | |
| secp256k1_scalar_set_b32(&r2, res[i][1], &overflow); | |
| CHECK(!overflow); | |
| secp256k1_scalar_mul(&z, &x, &y); | |
| CHECK(secp256k1_scalar_eq(&r1, &z)); | |
| if (!secp256k1_scalar_is_zero(&y)) { | |
| secp256k1_scalar_inverse(&zz, &y); | |
| secp256k1_scalar_inverse_var(&zzv, &y); | |
| CHECK(secp256k1_scalar_eq(&zzv, &zz)); | |
| secp256k1_scalar_mul(&z, &z, &zz); | |
| CHECK(secp256k1_scalar_eq(&x, &z)); | |
| secp256k1_scalar_mul(&zz, &zz, &y); | |
| CHECK(secp256k1_scalar_eq(&secp256k1_scalar_one, &zz)); | |
| } | |
| secp256k1_scalar_mul(&z, &x, &x); | |
| CHECK(secp256k1_scalar_eq(&r2, &z)); | |
| } | |
| } | |
| } | |
| | |
| /***** FIELD TESTS *****/ | |
| | |
| static void random_fe_non_square(secp256k1_fe *ns) { | |
| secp256k1_fe r; | |
| testutil_random_fe_non_zero(ns); | |
| if (secp256k1_fe_sqrt(&r, ns)) { | |
| secp256k1_fe_negate(ns, ns, 1); | |
| } | |
| } | |
| | |
| static int fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) { | |
| secp256k1_fe an = *a; | |
| secp256k1_fe bn = *b; | |
| secp256k1_fe_normalize_weak(&an); | |
| return secp256k1_fe_equal(&an, &bn); | |
| } | |
| | |
| static void run_field_convert(void) { | |
| static const unsigned char b32[32] = { | |
| 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | |
| 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, | |
| 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, | |
| 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40 | |
| }; | |
| static const secp256k1_fe_storage fes = SECP256K1_FE_STORAGE_CONST( | |
| 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL, | |
| 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL | |
| ); | |
| static const secp256k1_fe fe = SECP256K1_FE_CONST( | |
| 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL, | |
| 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL | |
| ); | |
| secp256k1_fe fe2; | |
| unsigned char b322[32]; | |
| secp256k1_fe_storage fes2; | |
| /* Check conversions to fe. */ | |
| CHECK(secp256k1_fe_set_b32_limit(&fe2, b32)); | |
| CHECK(secp256k1_fe_equal(&fe, &fe2)); | |
| secp256k1_fe_from_storage(&fe2, &fes); | |
| CHECK(secp256k1_fe_equal(&fe, &fe2)); | |
| /* Check conversion from fe. */ | |
| secp256k1_fe_get_b32(b322, &fe); | |
| CHECK(secp256k1_memcmp_var(b322, b32, 32) == 0); | |
| secp256k1_fe_to_storage(&fes2, &fe); | |
| CHECK(secp256k1_memcmp_var(&fes2, &fes, sizeof(fes)) == 0); | |
| } | |
| | |
| static void run_field_be32_overflow(void) { | |
| { | |
| static const unsigned char zero_overflow[32] = { | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F, | |
| }; | |
| static const unsigned char zero[32] = { 0x00 }; | |
| unsigned char out[32]; | |
| secp256k1_fe fe; | |
| CHECK(secp256k1_fe_set_b32_limit(&fe, zero_overflow) == 0); | |
| secp256k1_fe_set_b32_mod(&fe, zero_overflow); | |
| CHECK(secp256k1_fe_normalizes_to_zero(&fe) == 1); | |
| secp256k1_fe_normalize(&fe); | |
| CHECK(secp256k1_fe_is_zero(&fe) == 1); | |
| secp256k1_fe_get_b32(out, &fe); | |
| CHECK(secp256k1_memcmp_var(out, zero, 32) == 0); | |
| } | |
| { | |
| static const unsigned char one_overflow[32] = { | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30, | |
| }; | |
| static const unsigned char one[32] = { | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| }; | |
| unsigned char out[32]; | |
| secp256k1_fe fe; | |
| CHECK(secp256k1_fe_set_b32_limit(&fe, one_overflow) == 0); | |
| secp256k1_fe_set_b32_mod(&fe, one_overflow); | |
| secp256k1_fe_normalize(&fe); | |
| CHECK(secp256k1_fe_cmp_var(&fe, &secp256k1_fe_one) == 0); | |
| secp256k1_fe_get_b32(out, &fe); | |
| CHECK(secp256k1_memcmp_var(out, one, 32) == 0); | |
| } | |
| { | |
| static const unsigned char ff_overflow[32] = { | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | |
| }; | |
| static const unsigned char ff[32] = { | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x03, 0xD0, | |
| }; | |
| unsigned char out[32]; | |
| secp256k1_fe fe; | |
| const secp256k1_fe fe_ff = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0x01, 0x000003d0); | |
| CHECK(secp256k1_fe_set_b32_limit(&fe, ff_overflow) == 0); | |
| secp256k1_fe_set_b32_mod(&fe, ff_overflow); | |
| secp256k1_fe_normalize(&fe); | |
| CHECK(secp256k1_fe_cmp_var(&fe, &fe_ff) == 0); | |
| secp256k1_fe_get_b32(out, &fe); | |
| CHECK(secp256k1_memcmp_var(out, ff, 32) == 0); | |
| } | |
| } | |
| | |
| /* Returns true if two field elements have the same representation. */ | |
| static int fe_identical(const secp256k1_fe *a, const secp256k1_fe *b) { | |
| int ret = 1; | |
| /* Compare the struct member that holds the limbs. */ | |
| ret &= (secp256k1_memcmp_var(a->n, b->n, sizeof(a->n)) == 0); | |
| return ret; | |
| } | |
| | |
| static void run_field_half(void) { | |
| secp256k1_fe t, u; | |
| int m; | |
| | |
| /* Check magnitude 0 input */ | |
| secp256k1_fe_get_bounds(&t, 0); | |
| secp256k1_fe_half(&t); | |
| #ifdef VERIFY | |
| CHECK(t.magnitude == 1); | |
| CHECK(t.normalized == 0); | |
| #endif | |
| CHECK(secp256k1_fe_normalizes_to_zero(&t)); | |
| | |
| /* Check non-zero magnitudes in the supported range */ | |
| for (m = 1; m < 32; m++) { | |
| /* Check max-value input */ | |
| secp256k1_fe_get_bounds(&t, m); | |
| | |
| u = t; | |
| secp256k1_fe_half(&u); | |
| #ifdef VERIFY | |
| CHECK(u.magnitude == (m >> 1) + 1); | |
| CHECK(u.normalized == 0); | |
| #endif | |
| secp256k1_fe_normalize_weak(&u); | |
| secp256k1_fe_add(&u, &u); | |
| CHECK(fe_equal(&t, &u)); | |
| | |
| /* Check worst-case input: ensure the LSB is 1 so that P will be added, | |
| * which will also cause all carries to be 1, since all limbs that can | |
| * generate a carry are initially even and all limbs of P are odd in | |
| * every existing field implementation. */ | |
| secp256k1_fe_get_bounds(&t, m); | |
| CHECK(t.n[0] > 0); | |
| CHECK((t.n[0] & 1) == 0); | |
| --t.n[0]; | |
| | |
| u = t; | |
| secp256k1_fe_half(&u); | |
| #ifdef VERIFY | |
| CHECK(u.magnitude == (m >> 1) + 1); | |
| CHECK(u.normalized == 0); | |
| #endif | |
| secp256k1_fe_normalize_weak(&u); | |
| secp256k1_fe_add(&u, &u); | |
| CHECK(fe_equal(&t, &u)); | |
| } | |
| } | |
| | |
| static void run_field_misc(void) { | |
| secp256k1_fe x; | |
| secp256k1_fe y; | |
| secp256k1_fe z; | |
| secp256k1_fe q; | |
| int v; | |
| secp256k1_fe fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5); | |
| int i, j; | |
| for (i = 0; i < 1000 * COUNT; i++) { | |
| secp256k1_fe_storage xs, ys, zs; | |
| if (i & 1) { | |
| testutil_random_fe(&x); | |
| } else { | |
| testutil_random_fe_test(&x); | |
| } | |
| testutil_random_fe_non_zero(&y); | |
| v = testrand_bits(15); | |
| /* Test that fe_add_int is equivalent to fe_set_int + fe_add. */ | |
| secp256k1_fe_set_int(&q, v); /* q = v */ | |
| z = x; /* z = x */ | |
| secp256k1_fe_add(&z, &q); /* z = x+v */ | |
| q = x; /* q = x */ | |
| secp256k1_fe_add_int(&q, v); /* q = x+v */ | |
| CHECK(fe_equal(&q, &z)); | |
| /* Test the fe equality and comparison operations. */ | |
| CHECK(secp256k1_fe_cmp_var(&x, &x) == 0); | |
| CHECK(secp256k1_fe_equal(&x, &x)); | |
| z = x; | |
| secp256k1_fe_add(&z,&y); | |
| /* Test fe conditional move; z is not normalized here. */ | |
| q = x; | |
| secp256k1_fe_cmov(&x, &z, 0); | |
| #ifdef VERIFY | |
| CHECK(!x.normalized); | |
| CHECK((x.magnitude == q.magnitude) || (x.magnitude == z.magnitude)); | |
| CHECK((x.magnitude >= q.magnitude) && (x.magnitude >= z.magnitude)); | |
| #endif | |
| x = q; | |
| secp256k1_fe_cmov(&x, &x, 1); | |
| CHECK(!fe_identical(&x, &z)); | |
| CHECK(fe_identical(&x, &q)); | |
| secp256k1_fe_cmov(&q, &z, 1); | |
| #ifdef VERIFY | |
| CHECK(!q.normalized); | |
| CHECK((q.magnitude == x.magnitude) || (q.magnitude == z.magnitude)); | |
| CHECK((q.magnitude >= x.magnitude) && (q.magnitude >= z.magnitude)); | |
| #endif | |
| CHECK(fe_identical(&q, &z)); | |
| q = z; | |
| secp256k1_fe_normalize_var(&x); | |
| secp256k1_fe_normalize_var(&z); | |
| CHECK(!secp256k1_fe_equal(&x, &z)); | |
| secp256k1_fe_normalize_var(&q); | |
| secp256k1_fe_cmov(&q, &z, (i&1)); | |
| #ifdef VERIFY | |
| CHECK(q.normalized && q.magnitude == 1); | |
| #endif | |
| for (j = 0; j < 6; j++) { | |
| secp256k1_fe_negate_unchecked(&z, &z, j+1); | |
| secp256k1_fe_normalize_var(&q); | |
| secp256k1_fe_cmov(&q, &z, (j&1)); | |
| #ifdef VERIFY | |
| CHECK(!q.normalized && q.magnitude == z.magnitude); | |
| #endif | |
| } | |
| secp256k1_fe_normalize_var(&z); | |
| /* Test storage conversion and conditional moves. */ | |
| secp256k1_fe_to_storage(&xs, &x); | |
| secp256k1_fe_to_storage(&ys, &y); | |
| secp256k1_fe_to_storage(&zs, &z); | |
| secp256k1_fe_storage_cmov(&zs, &xs, 0); | |
| secp256k1_fe_storage_cmov(&zs, &zs, 1); | |
| CHECK(secp256k1_memcmp_var(&xs, &zs, sizeof(xs)) != 0); | |
| secp256k1_fe_storage_cmov(&ys, &xs, 1); | |
| CHECK(secp256k1_memcmp_var(&xs, &ys, sizeof(xs)) == 0); | |
| secp256k1_fe_from_storage(&x, &xs); | |
| secp256k1_fe_from_storage(&y, &ys); | |
| secp256k1_fe_from_storage(&z, &zs); | |
| /* Test that mul_int, mul, and add agree. */ | |
| secp256k1_fe_add(&y, &x); | |
| secp256k1_fe_add(&y, &x); | |
| z = x; | |
| secp256k1_fe_mul_int(&z, 3); | |
| CHECK(fe_equal(&y, &z)); | |
| secp256k1_fe_add(&y, &x); | |
| secp256k1_fe_add(&z, &x); | |
| CHECK(fe_equal(&z, &y)); | |
| z = x; | |
| secp256k1_fe_mul_int(&z, 5); | |
| secp256k1_fe_mul(&q, &x, &fe5); | |
| CHECK(fe_equal(&z, &q)); | |
| secp256k1_fe_negate(&x, &x, 1); | |
| secp256k1_fe_add(&z, &x); | |
| secp256k1_fe_add(&q, &x); | |
| CHECK(fe_equal(&y, &z)); | |
| CHECK(fe_equal(&q, &y)); | |
| /* Check secp256k1_fe_half. */ | |
| z = x; | |
| secp256k1_fe_half(&z); | |
| secp256k1_fe_add(&z, &z); | |
| CHECK(fe_equal(&x, &z)); | |
| secp256k1_fe_add(&z, &z); | |
| secp256k1_fe_half(&z); | |
| CHECK(fe_equal(&x, &z)); | |
| } | |
| } | |
| | |
| static void test_fe_mul(const secp256k1_fe* a, const secp256k1_fe* b, int use_sqr) | |
| { | |
| secp256k1_fe c, an, bn; | |
| /* Variables in BE 32-byte format. */ | |
| unsigned char a32[32], b32[32], c32[32]; | |
| /* Variables in LE 16x uint16_t format. */ | |
| uint16_t a16[16], b16[16], c16[16]; | |
| /* Field modulus in LE 16x uint16_t format. */ | |
| static const uint16_t m16[16] = { | |
| 0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, | |
| }; | |
| uint16_t t16[32]; | |
| int i; | |
| | |
| /* Compute C = A * B in fe format. */ | |
| c = *a; | |
| if (use_sqr) { | |
| secp256k1_fe_sqr(&c, &c); | |
| } else { | |
| secp256k1_fe_mul(&c, &c, b); | |
| } | |
| | |
| /* Convert A, B, C into LE 16x uint16_t format. */ | |
| an = *a; | |
| bn = *b; | |
| secp256k1_fe_normalize_var(&c); | |
| secp256k1_fe_normalize_var(&an); | |
| secp256k1_fe_normalize_var(&bn); | |
| secp256k1_fe_get_b32(a32, &an); | |
| secp256k1_fe_get_b32(b32, &bn); | |
| secp256k1_fe_get_b32(c32, &c); | |
| for (i = 0; i < 16; ++i) { | |
| a16[i] = a32[31 - 2*i] + ((uint16_t)a32[30 - 2*i] << 8); | |
| b16[i] = b32[31 - 2*i] + ((uint16_t)b32[30 - 2*i] << 8); | |
| c16[i] = c32[31 - 2*i] + ((uint16_t)c32[30 - 2*i] << 8); | |
| } | |
| /* Compute T = A * B in LE 16x uint16_t format. */ | |
| mulmod256(t16, a16, b16, m16); | |
| /* Compare */ | |
| CHECK(secp256k1_memcmp_var(t16, c16, 32) == 0); | |
| } | |
| | |
| static void run_fe_mul(void) { | |
| int i; | |
| for (i = 0; i < 100 * COUNT; ++i) { | |
| secp256k1_fe a, b, c, d; | |
| testutil_random_fe(&a); | |
| testutil_random_fe_magnitude(&a, 8); | |
| testutil_random_fe(&b); | |
| testutil_random_fe_magnitude(&b, 8); | |
| testutil_random_fe_test(&c); | |
| testutil_random_fe_magnitude(&c, 8); | |
| testutil_random_fe_test(&d); | |
| testutil_random_fe_magnitude(&d, 8); | |
| test_fe_mul(&a, &a, 1); | |
| test_fe_mul(&c, &c, 1); | |
| test_fe_mul(&a, &b, 0); | |
| test_fe_mul(&a, &c, 0); | |
| test_fe_mul(&c, &b, 0); | |
| test_fe_mul(&c, &d, 0); | |
| } | |
| } | |
| | |
| static void run_sqr(void) { | |
| int i; | |
| secp256k1_fe x, y, lhs, rhs, tmp; | |
| | |
| secp256k1_fe_set_int(&x, 1); | |
| secp256k1_fe_negate(&x, &x, 1); | |
| | |
| for (i = 1; i <= 512; ++i) { | |
| secp256k1_fe_mul_int(&x, 2); | |
| secp256k1_fe_normalize(&x); | |
| | |
| /* Check that (x+y)*(x-y) = x^2 - y*2 for some random values y */ | |
| testutil_random_fe_test(&y); | |
| | |
| lhs = x; | |
| secp256k1_fe_add(&lhs, &y); /* lhs = x+y */ | |
| secp256k1_fe_negate(&tmp, &y, 1); /* tmp = -y */ | |
| secp256k1_fe_add(&tmp, &x); /* tmp = x-y */ | |
| secp256k1_fe_mul(&lhs, &lhs, &tmp); /* lhs = (x+y)*(x-y) */ | |
| | |
| secp256k1_fe_sqr(&rhs, &x); /* rhs = x^2 */ | |
| secp256k1_fe_sqr(&tmp, &y); /* tmp = y^2 */ | |
| secp256k1_fe_negate(&tmp, &tmp, 1); /* tmp = -y^2 */ | |
| secp256k1_fe_add(&rhs, &tmp); /* rhs = x^2 - y^2 */ | |
| | |
| CHECK(fe_equal(&lhs, &rhs)); | |
| } | |
| } | |
| | |
| static void test_sqrt(const secp256k1_fe *a, const secp256k1_fe *k) { | |
| secp256k1_fe r1, r2; | |
| int v = secp256k1_fe_sqrt(&r1, a); | |
| CHECK((v == 0) == (k == NULL)); | |
| | |
| if (k != NULL) { | |
| /* Check that the returned root is +/- the given known answer */ | |
| secp256k1_fe_negate(&r2, &r1, 1); | |
| secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k); | |
| secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2); | |
| CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2)); | |
| } | |
| } | |
| | |
| static void run_sqrt(void) { | |
| secp256k1_fe ns, x, s, t; | |
| int i; | |
| | |
| /* Check sqrt(0) is 0 */ | |
| secp256k1_fe_set_int(&x, 0); | |
| secp256k1_fe_sqr(&s, &x); | |
| test_sqrt(&s, &x); | |
| | |
| /* Check sqrt of small squares (and their negatives) */ | |
| for (i = 1; i <= 100; i++) { | |
| secp256k1_fe_set_int(&x, i); | |
| secp256k1_fe_sqr(&s, &x); | |
| test_sqrt(&s, &x); | |
| secp256k1_fe_negate(&t, &s, 1); | |
| test_sqrt(&t, NULL); | |
| } | |
| | |
| /* Consistency checks for large random values */ | |
| for (i = 0; i < 10; i++) { | |
| int j; | |
| random_fe_non_square(&ns); | |
| for (j = 0; j < COUNT; j++) { | |
| testutil_random_fe(&x); | |
| secp256k1_fe_sqr(&s, &x); | |
| CHECK(secp256k1_fe_is_square_var(&s)); | |
| test_sqrt(&s, &x); | |
| secp256k1_fe_negate(&t, &s, 1); | |
| CHECK(!secp256k1_fe_is_square_var(&t)); | |
| test_sqrt(&t, NULL); | |
| secp256k1_fe_mul(&t, &s, &ns); | |
| test_sqrt(&t, NULL); | |
| } | |
| } | |
| } | |
| | |
| /***** FIELD/SCALAR INVERSE TESTS *****/ | |
| | |
| static const secp256k1_scalar scalar_minus_one = SECP256K1_SCALAR_CONST( | |
| 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, | |
| 0xBAAEDCE6, 0xAF48A03B, 0xBFD25E8C, 0xD0364140 | |
| ); | |
| | |
| static const secp256k1_fe fe_minus_one = SECP256K1_FE_CONST( | |
| 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | |
| 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFC2E | |
| ); | |
| | |
| /* These tests test the following identities: | |
| * | |
| * for x==0: 1/x == 0 | |
| * for x!=0: x*(1/x) == 1 | |
| * for x!=0 and x!=1: 1/(1/x - 1) + 1 == -1/(x-1) | |
| */ | |
| | |
| static void test_inverse_scalar(secp256k1_scalar* out, const secp256k1_scalar* x, int var) | |
| { | |
| secp256k1_scalar l, r, t; | |
| | |
| (var ? secp256k1_scalar_inverse_var : secp256k1_scalar_inverse)(&l, x); /* l = 1/x */ | |
| if (out) *out = l; | |
| if (secp256k1_scalar_is_zero(x)) { | |
| CHECK(secp256k1_scalar_is_zero(&l)); | |
| return; | |
| } | |
| secp256k1_scalar_mul(&t, x, &l); /* t = x*(1/x) */ | |
| CHECK(secp256k1_scalar_is_one(&t)); /* x*(1/x) == 1 */ | |
| secp256k1_scalar_add(&r, x, &scalar_minus_one); /* r = x-1 */ | |
| if (secp256k1_scalar_is_zero(&r)) return; | |
| (var ? secp256k1_scalar_inverse_var : secp256k1_scalar_inverse)(&r, &r); /* r = 1/(x-1) */ | |
| secp256k1_scalar_add(&l, &scalar_minus_one, &l); /* l = 1/x-1 */ | |
| (var ? secp256k1_scalar_inverse_var : secp256k1_scalar_inverse)(&l, &l); /* l = 1/(1/x-1) */ | |
| secp256k1_scalar_add(&l, &l, &secp256k1_scalar_one); /* l = 1/(1/x-1)+1 */ | |
| secp256k1_scalar_add(&l, &r, &l); /* l = 1/(1/x-1)+1 + 1/(x-1) */ | |
| CHECK(secp256k1_scalar_is_zero(&l)); /* l == 0 */ | |
| } | |
| | |
| static void test_inverse_field(secp256k1_fe* out, const secp256k1_fe* x, int var) | |
| { | |
| secp256k1_fe l, r, t; | |
| | |
| (var ? secp256k1_fe_inv_var : secp256k1_fe_inv)(&l, x) ; /* l = 1/x */ | |
| if (out) *out = l; | |
| t = *x; /* t = x */ | |
| if (secp256k1_fe_normalizes_to_zero_var(&t)) { | |
| CHECK(secp256k1_fe_normalizes_to_zero(&l)); | |
| return; | |
| } | |
| secp256k1_fe_mul(&t, x, &l); /* t = x*(1/x) */ | |
| secp256k1_fe_add(&t, &fe_minus_one); /* t = x*(1/x)-1 */ | |
| CHECK(secp256k1_fe_normalizes_to_zero(&t)); /* x*(1/x)-1 == 0 */ | |
| r = *x; /* r = x */ | |
| secp256k1_fe_add(&r, &fe_minus_one); /* r = x-1 */ | |
| if (secp256k1_fe_normalizes_to_zero_var(&r)) return; | |
| (var ? secp256k1_fe_inv_var : secp256k1_fe_inv)(&r, &r); /* r = 1/(x-1) */ | |
| secp256k1_fe_add(&l, &fe_minus_one); /* l = 1/x-1 */ | |
| (var ? secp256k1_fe_inv_var : secp256k1_fe_inv)(&l, &l); /* l = 1/(1/x-1) */ | |
| secp256k1_fe_add_int(&l, 1); /* l = 1/(1/x-1)+1 */ | |
| secp256k1_fe_add(&l, &r); /* l = 1/(1/x-1)+1 + 1/(x-1) */ | |
| CHECK(secp256k1_fe_normalizes_to_zero_var(&l)); /* l == 0 */ | |
| } | |
| | |
| static void run_inverse_tests(void) | |
| { | |
| /* Fixed test cases for field inverses: pairs of (x, 1/x) mod p. */ | |
| static const secp256k1_fe fe_cases[][2] = { | |
| /* 0 */ | |
| {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), | |
| SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}, | |
| /* 1 */ | |
| {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), | |
| SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1)}, | |
| /* -1 */ | |
| {SECP256K1_FE_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xfffffc2e), | |
| SECP256K1_FE_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xfffffc2e)}, | |
| /* 2 */ | |
| {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2), | |
| SECP256K1_FE_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x7ffffe18)}, | |
| /* 2**128 */ | |
| {SECP256K1_FE_CONST(0, 0, 0, 1, 0, 0, 0, 0), | |
| SECP256K1_FE_CONST(0xbcb223fe, 0xdc24a059, 0xd838091d, 0xd2253530, 0xffffffff, 0xffffffff, 0xffffffff, 0x434dd931)}, | |
| /* Input known to need 637 divsteps */ | |
| {SECP256K1_FE_CONST(0xe34e9c95, 0x6bee8a84, 0x0dcb632a, 0xdb8a1320, 0x66885408, 0x06f3f996, 0x7c11ca84, 0x19199ec3), | |
| SECP256K1_FE_CONST(0xbd2cbd8f, 0x1c536828, 0x9bccda44, 0x2582ac0c, 0x870152b0, 0x8a3f09fb, 0x1aaadf92, 0x19b618e5)}, | |
| /* Input known to need 567 divsteps starting with delta=1/2. */ | |
| {SECP256K1_FE_CONST(0xf6bc3ba3, 0x636451c4, 0x3e46357d, 0x2c21d619, 0x0988e234, 0x15985661, 0x6672982b, 0xa7549bfc), | |
| SECP256K1_FE_CONST(0xb024fdc7, 0x5547451e, 0x426c585f, 0xbd481425, 0x73df6b75, 0xeef6d9d0, 0x389d87d4, 0xfbb440ba)}, | |
| /* Input known to need 566 divsteps starting with delta=1/2. */ | |
| {SECP256K1_FE_CONST(0xb595d81b, 0x2e3c1e2f, 0x482dbc65, 0xe4865af7, 0x9a0a50aa, 0x29f9e618, 0x6f87d7a5, 0x8d1063ae), | |
| SECP256K1_FE_CONST(0xc983337c, 0x5d5c74e1, 0x49918330, 0x0b53afb5, 0xa0428a0b, 0xce6eef86, 0x059bd8ef, 0xe5b908de)}, | |
| /* Set of 10 inputs accessing all 128 entries in the modinv32 divsteps_var table */ | |
| {SECP256K1_FE_CONST(0x00000000, 0x00000000, 0xe0ff1f80, 0x1f000000, 0x00000000, 0x00000000, 0xfeff0100, 0x00000000), | |
| SECP256K1_FE_CONST(0x9faf9316, 0x77e5049d, 0x0b5e7a1b, 0xef70b893, 0x18c9e30c, 0x045e7fd7, 0x29eddf8c, 0xd62e9e3d)}, | |
| {SECP256K1_FE_CONST(0x621a538d, 0x511b2780, 0x35688252, 0x53f889a4, 0x6317c3ac, 0x32ba0a46, 0x6277c0d1, 0xccd31192), | |
| SECP256K1_FE_CONST(0x38513b0c, 0x5eba856f, 0xe29e882e, 0x9b394d8c, 0x34bda011, 0xeaa66943, 0x6a841a4c, 0x6ae8bcff)}, | |
| {SECP256K1_FE_CONST(0x00000200, 0xf0ffff1f, 0x00000000, 0x0000e0ff, 0xffffffff, 0xfffcffff, 0xffffffff, 0xffff0100), | |
| SECP256K1_FE_CONST(0x5da42a52, 0x3640de9e, 0x13e64343, 0x0c7591b7, 0x6c1e3519, 0xf048c5b6, 0x0484217c, 0xedbf8b2f)}, | |
| {SECP256K1_FE_CONST(0xd1343ef9, 0x4b952621, 0x7c52a2ee, 0x4ea1281b, 0x4ab46410, 0x9f26998d, 0xa686a8ff, 0x9f2103e8), | |
| SECP256K1_FE_CONST(0x84044385, 0x9a4619bf, 0x74e35b6d, 0xa47e0c46, 0x6b7fb47d, 0x9ffab128, 0xb0775aa3, 0xcb318bd1)}, | |
| {SECP256K1_FE_CONST(0xb27235d2, 0xc56a52be, 0x210db37a, 0xd50d23a4, 0xbe621bdd, 0x5df22c6a, 0xe926ba62, 0xd2e4e440), | |
| SECP256K1_FE_CONST(0x67a26e54, 0x483a9d3c, 0xa568469e, 0xd258ab3d, 0xb9ec9981, 0xdca9b1bd, 0x8d2775fe, 0x53ae429b)}, | |
| {SECP256K1_FE_CONST(0x00000000, 0x00000000, 0x00e0ffff, 0xffffff83, 0xffffffff, 0x3f00f00f, 0x000000e0, 0xffffffff), | |
| SECP256K1_FE_CONST(0x310e10f8, 0x23bbfab0, 0xac94907d, 0x076c9a45, 0x8d357d7f, 0xc763bcee, 0x00d0e615, 0x5a6acef6)}, | |
| {SECP256K1_FE_CONST(0xfeff0300, 0x001c0000, 0xf80700c0, 0x0ff0ffff, 0xffffffff, 0x0fffffff, 0xffff0100, 0x7f0000fe), | |
| SECP256K1_FE_CONST(0x28e2fdb4, 0x0709168b, 0x86f598b0, 0x3453a370, 0x530cf21f, 0x32f978d5, 0x1d527a71, 0x59269b0c)}, | |
| {SECP256K1_FE_CONST(0xc2591afa, 0x7bb98ef7, 0x090bb273, 0x85c14f87, 0xbb0b28e0, 0x54d3c453, 0x85c66753, 0xd5574d2f), | |
| SECP256K1_FE_CONST(0xfdca70a2, 0x70ce627c, 0x95e66fae, 0x848a6dbb, 0x07ffb15c, 0x5f63a058, 0xba4140ed, 0x6113b503)}, | |
| {SECP256K1_FE_CONST(0xf5475db3, 0xedc7b5a3, 0x411c047e, 0xeaeb452f, 0xc625828e, 0x1cf5ad27, 0x8eec1060, 0xc7d3e690), | |
| SECP256K1_FE_CONST(0x5eb756c0, 0xf963f4b9, 0xdc6a215e, 0xec8cc2d8, 0x2e9dec01, 0xde5eb88d, 0x6aba7164, 0xaecb2c5a)}, | |
| {SECP256K1_FE_CONST(0x00000000, 0x00f8ffff, 0xffffffff, 0x01000000, 0xe0ff1f00, 0x00000000, 0xffffff7f, 0x00000000), | |
| SECP256K1_FE_CONST(0xe0d2e3d8, 0x49b6157d, 0xe54e88c2, 0x1a7f02ca, 0x7dd28167, 0xf1125d81, 0x7bfa444e, 0xbe110037)}, | |
| /* Selection of randomly generated inputs that reach high/low d/e values in various configurations. */ | |
| {SECP256K1_FE_CONST(0x13cc08a4, 0xd8c41f0f, 0x179c3e67, 0x54c46c67, 0xc4109221, 0x09ab3b13, 0xe24d9be1, 0xffffe950), | |
| SECP256K1_FE_CONST(0xb80c8006, 0xd16abaa7, 0xcabd71e5, 0xcf6714f4, 0x966dd3d0, 0x64767a2d, 0xe92c4441, 0x51008cd1)}, | |
| {SECP256K1_FE_CONST(0xaa6db990, 0x95efbca1, 0x3cc6ff71, 0x0602e24a, 0xf49ff938, 0x99fffc16, 0x46f40993, 0xc6e72057), | |
| SECP256K1_FE_CONST(0xd5d3dd69, 0xb0c195e5, 0x285f1d49, 0xe639e48c, 0x9223f8a9, 0xca1d731d, 0x9ca482f9, 0xa5b93e06)}, | |
| {SECP256K1_FE_CONST(0x1c680eac, 0xaeabffd8, 0x9bdc4aee, 0x1781e3de, 0xa3b08108, 0x0015f2e0, 0x94449e1b, 0x2f67a058), | |
| SECP256K1_FE_CONST(0x7f083f8d, 0x31254f29, 0x6510f475, 0x245c373d, 0xc5622590, 0x4b323393, 0x32ed1719, 0xc127444b)}, | |
| {SECP256K1_FE_CONST(0x147d44b3, 0x012d83f8, 0xc160d386, 0x1a44a870, 0x9ba6be96, 0x8b962707, 0x267cbc1a, 0xb65b2f0a), | |
| SECP256K1_FE_CONST(0x555554ff, 0x170aef1e, 0x50a43002, 0xe51fbd36, 0xafadb458, 0x7a8aded1, 0x0ca6cd33, 0x6ed9087c)}, | |
| {SECP256K1_FE_CONST(0x12423796, 0x22f0fe61, 0xf9ca017c, 0x5384d107, 0xa1fbf3b2, 0x3b018013, 0x916a3c37, 0x4000b98c), | |
| SECP256K1_FE_CONST(0x20257700, 0x08668f94, 0x1177e306, 0x136c01f5, 0x8ed1fbd2, 0x95ec4589, 0xae38edb9, 0xfd19b6d7)}, | |
| {SECP256K1_FE_CONST(0xdcf2d030, 0x9ab42cb4, 0x93ffa181, 0xdcd23619, 0x39699b52, 0x08909a20, 0xb5a17695, 0x3a9dcf21), | |
| SECP256K1_FE_CONST(0x1f701dea, 0xe211fb1f, 0x4f37180d, 0x63a0f51c, 0x29fe1e40, 0xa40b6142, 0x2e7b12eb, 0x982b06b6)}, | |
| {SECP256K1_FE_CONST(0x79a851f6, 0xa6314ed3, 0xb35a55e6, 0xca1c7d7f, 0xe32369ea, 0xf902432e, 0x375308c5, 0xdfd5b600), | |
| SECP256K1_FE_CONST(0xcaae00c5, 0xe6b43851, 0x9dabb737, 0x38cba42c, 0xa02c8549, 0x7895dcbf, 0xbd183d71, 0xafe4476a)}, | |
| {SECP256K1_FE_CONST(0xede78fdd, 0xcfc92bf1, 0x4fec6c6c, 0xdb8d37e2, 0xfb66bc7b, 0x28701870, 0x7fa27c9a, 0x307196ec), | |
| SECP256K1_FE_CONST(0x68193a6c, 0x9a8b87a7, 0x2a760c64, 0x13e473f6, 0x23ae7bed, 0x1de05422, 0x88865427, 0xa3418265)}, | |
| {SECP256K1_FE_CONST(0xa40b2079, 0xb8f88e89, 0xa7617997, 0x89baf5ae, 0x174df343, 0x75138eae, 0x2711595d, 0x3fc3e66c), | |
| SECP256K1_FE_CONST(0x9f99c6a5, 0x6d685267, 0xd4b87c37, 0x9d9c4576, 0x358c692b, 0x6bbae0ed, 0x3389c93d, 0x7fdd2655)}, | |
| {SECP256K1_FE_CONST(0x7c74c6b6, 0xe98d9151, 0x72645cf1, 0x7f06e321, 0xcefee074, 0x15b2113a, 0x10a9be07, 0x08a45696), | |
| SECP256K1_FE_CONST(0x8c919a88, 0x898bc1e0, 0x77f26f97, 0x12e655b7, 0x9ba0ac40, 0xe15bb19e, 0x8364cc3b, 0xe227a8ee)}, | |
| {SECP256K1_FE_CONST(0x109ba1ce, 0xdafa6d4a, 0xa1cec2b2, 0xeb1069f4, 0xb7a79e5b, 0xec6eb99b, 0xaec5f643, 0xee0e723e), | |
| SECP256K1_FE_CONST(0x93d13eb8, 0x4bb0bcf9, 0xe64f5a71, 0xdbe9f359, 0x7191401c, 0x6f057a4a, 0xa407fe1b, 0x7ecb65cc)}, | |
| {SECP256K1_FE_CONST(0x3db076cd, 0xec74a5c9, 0xf61dd138, 0x90e23e06, 0xeeedd2d0, 0x74cbc4e0, 0x3dbe1e91, 0xded36a78), | |
| SECP256K1_FE_CONST(0x3f07f966, 0x8e2a1e09, 0x706c71df, 0x02b5e9d5, 0xcb92ddbf, 0xcdd53010, 0x16545564, 0xe660b107)}, | |
| {SECP256K1_FE_CONST(0xe31c73ed, 0xb4c4b82c, 0x02ae35f7, 0x4cdec153, 0x98b522fd, 0xf7d2460c, 0x6bf7c0f8, 0x4cf67b0d), | |
| SECP256K1_FE_CONST(0x4b8f1faf, 0x94e8b070, 0x19af0ff6, 0xa319cd31, 0xdf0a7ffb, 0xefaba629, 0x59c50666, 0x1fe5b843)}, | |
| {SECP256K1_FE_CONST(0x4c8b0e6e, 0x83392ab6, 0xc0e3e9f1, 0xbbd85497, 0x16698897, 0xf552d50d, 0x79652ddb, 0x12f99870), | |
| SECP256K1_FE_CONST(0x56d5101f, 0xd23b7949, 0x17dc38d6, 0xf24022ef, 0xcf18e70a, 0x5cc34424, 0x438544c3, 0x62da4bca)}, | |
| {SECP256K1_FE_CONST(0xb0e040e2, 0x40cc35da, 0x7dd5c611, 0x7fccb178, 0x28888137, 0xbc930358, 0xea2cbc90, 0x775417dc), | |
| SECP256K1_FE_CONST(0xca37f0d4, 0x016dd7c8, 0xab3ae576, 0x96e08d69, 0x68ed9155, 0xa9b44270, 0x900ae35d, 0x7c7800cd)}, | |
| {SECP256K1_FE_CONST(0x8a32ea49, 0x7fbb0bae, 0x69724a9d, 0x8e2105b2, 0xbdf69178, 0x862577ef, 0x35055590, 0x667ddaef), | |
| SECP256K1_FE_CONST(0xd02d7ead, 0xc5e190f0, 0x559c9d72, 0xdaef1ffc, 0x64f9f425, 0xf43645ea, 0x7341e08d, 0x11768e96)}, | |
| {SECP256K1_FE_CONST(0xa3592d98, 0x9abe289d, 0x579ebea6, 0xbb0857a8, 0xe242ab73, 0x85f9a2ce, 0xb6998f0f, 0xbfffbfc6), | |
| SECP256K1_FE_CONST(0x093c1533, 0x32032efa, 0x6aa46070, 0x0039599e, 0x589c35f4, 0xff525430, 0x7fe3777a, 0x44b43ddc)}, | |
| {SECP256K1_FE_CONST(0x647178a3, 0x229e607b, 0xcc98521a, 0xcce3fdd9, 0x1e1bc9c9, 0x97fb7c6a, 0x61b961e0, 0x99b10709), | |
| SECP256K1_FE_CONST(0x98217c13, 0xd51ddf78, 0x96310e77, 0xdaebd908, 0x602ca683, 0xcb46d07a, 0xa1fcf17e, 0xc8e2feb3)}, | |
| {SECP256K1_FE_CONST(0x7334627c, 0x73f98968, 0x99464b4b, 0xf5964958, 0x1b95870d, 0xc658227e, 0x5e3235d8, 0xdcab5787), | |
| SECP256K1_FE_CONST(0x000006fd, 0xc7e9dd94, 0x40ae367a, 0xe51d495c, 0x07603b9b, 0x2d088418, 0x6cc5c74c, 0x98514307)}, | |
| {SECP256K1_FE_CONST(0x82e83876, 0x96c28938, 0xa50dd1c5, 0x605c3ad1, 0xc048637d, 0x7a50825f, 0x335ed01a, 0x00005760), | |
| SECP256K1_FE_CONST(0xb0393f9f, 0x9f2aa55e, 0xf5607e2e, 0x5287d961, 0x60b3e704, 0xf3e16e80, 0xb4f9a3ea, 0xfec7f02d)}, | |
| {SECP256K1_FE_CONST(0xc97b6cec, 0x3ee6b8dc, 0x98d24b58, 0x3c1970a1, 0xfe06297a, 0xae813529, 0xe76bb6bd, 0x771ae51d), | |
| SECP256K1_FE_CONST(0x0507c702, 0xd407d097, 0x47ddeb06, 0xf6625419, 0x79f48f79, 0x7bf80d0b, 0xfc34b364, 0x253a5db1)}, | |
| {SECP256K1_FE_CONST(0xd559af63, 0x77ea9bc4, 0x3cf1ad14, 0x5c7a4bbb, 0x10e7d18b, 0x7ce0dfac, 0x380bb19d, 0x0bb99bd3), | |
| SECP256K1_FE_CONST(0x00196119, 0xb9b00d92, 0x34edfdb5, 0xbbdc42fc, 0xd2daa33a, 0x163356ca, 0xaa8754c8, 0xb0ec8b0b)}, | |
| {SECP256K1_FE_CONST(0x8ddfa3dc, 0x52918da0, 0x640519dc, 0x0af8512a, 0xca2d33b2, 0xbde52514, 0xda9c0afc, 0xcb29fce4), | |
| SECP256K1_FE_CONST(0xb3e4878d, 0x5cb69148, 0xcd54388b, 0xc23acce0, 0x62518ba8, 0xf09def92, 0x7b31e6aa, 0x6ba35b02)}, | |
| {SECP256K1_FE_CONST(0xf8207492, 0xe3049f0a, 0x65285f2b, 0x0bfff996, 0x00ca112e, 0xc05da837, 0x546d41f9, 0x5194fb91), | |
| SECP256K1_FE_CONST(0x7b7ee50b, 0xa8ed4bbd, 0xf6469930, 0x81419a5c, 0x071441c7, 0x290d046e, 0x3b82ea41, 0x611c5f95)}, | |
| {SECP256K1_FE_CONST(0x050f7c80, 0x5bcd3c6b, 0x823cb724, 0x5ce74db7, 0xa4e39f5c, 0xbd8828d7, 0xfd4d3e07, 0x3ec2926a), | |
| SECP256K1_FE_CONST(0x000d6730, 0xb0171314, 0x4764053d, 0xee157117, 0x48fd61da, 0xdea0b9db, 0x1d5e91c6, 0xbdc3f59e)}, | |
| {SECP256K1_FE_CONST(0x3e3ea8eb, 0x05d760cf, 0x23009263, 0xb3cb3ac9, 0x088f6f0d, 0x3fc182a3, 0xbd57087c, 0xe67c62f9), | |
| SECP256K1_FE_CONST(0xbe988716, 0xa29c1bf6, 0x4456aed6, 0xab1e4720, 0x49929305, 0x51043bf4, 0xebd833dd, 0xdd511e8b)}, | |
| {SECP256K1_FE_CONST(0x6964d2a9, 0xa7fa6501, 0xa5959249, 0x142f4029, 0xea0c1b5f, 0x2f487ef6, 0x301ac80a, 0x768be5cd), | |
| SECP256K1_FE_CONST(0x3918ffe4, 0x07492543, 0xed24d0b7, 0x3df95f8f, 0xaffd7cb4, 0x0de2191c, 0x9ec2f2ad, 0x2c0cb3c6)}, | |
| {SECP256K1_FE_CONST(0x37c93520, 0xf6ddca57, 0x2b42fd5e, 0xb5c7e4de, 0x11b5b81c, 0xb95e91f3, 0x95c4d156, 0x39877ccb), | |
| SECP256K1_FE_CONST(0x9a94b9b5, 0x57eb71ee, 0x4c975b8b, 0xac5262a8, 0x077b0595, 0xe12a6b1f, 0xd728edef, 0x1a6bf956)} | |
| }; | |
| /* Fixed test cases for scalar inverses: pairs of (x, 1/x) mod n. */ | |
| static const secp256k1_scalar scalar_cases[][2] = { | |
| /* 0 */ | |
| {SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0), | |
| SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0)}, | |
| /* 1 */ | |
| {SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1), | |
| SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1)}, | |
| /* -1 */ | |
| {SECP256K1_SCALAR_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xbaaedce6, 0xaf48a03b, 0xbfd25e8c, 0xd0364140), | |
| SECP256K1_SCALAR_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xbaaedce6, 0xaf48a03b, 0xbfd25e8c, 0xd0364140)}, | |
| /* 2 */ | |
| {SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 2), | |
| SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x5d576e73, 0x57a4501d, 0xdfe92f46, 0x681b20a1)}, | |
| /* 2**128 */ | |
| {SECP256K1_SCALAR_CONST(0, 0, 0, 1, 0, 0, 0, 0), | |
| SECP256K1_SCALAR_CONST(0x50a51ac8, 0x34b9ec24, 0x4b0dff66, 0x5588b13e, 0x9984d5b3, 0xcf80ef0f, 0xd6a23766, 0xa3ee9f22)}, | |
| /* Input known to need 635 divsteps */ | |
| {SECP256K1_SCALAR_CONST(0xcb9f1d35, 0xdd4416c2, 0xcd71bf3f, 0x6365da66, 0x3c9b3376, 0x8feb7ae9, 0x32a5ef60, 0x19199ec3), | |
| SECP256K1_SCALAR_CONST(0x1d7c7bba, 0xf1893d53, 0xb834bd09, 0x36b411dc, 0x42c2e42f, 0xec72c428, 0x5e189791, 0x8e9bc708)}, | |
| /* Input known to need 566 divsteps starting with delta=1/2. */ | |
| {SECP256K1_SCALAR_CONST(0x7e3c993d, 0xa4272488, 0xbc015b49, 0x2db54174, 0xd382083a, 0xebe6db35, 0x80f82eff, 0xcd132c72), | |
| SECP256K1_SCALAR_CONST(0x086f34a0, 0x3e631f76, 0x77418f28, 0xcc84ac95, 0x6304439d, 0x365db268, 0x312c6ded, 0xd0b934f8)}, | |
| /* Input known to need 565 divsteps starting with delta=1/2. */ | |
| {SECP256K1_SCALAR_CONST(0xbad7e587, 0x3f307859, 0x60d93147, 0x8a18491e, 0xb38a9fd5, 0x254350d3, 0x4b1f0e4b, 0x7dd6edc4), | |
| SECP256K1_SCALAR_CONST(0x89f2df26, 0x39e2b041, 0xf19bd876, 0xd039c8ac, 0xc2223add, 0x29c4943e, 0x6632d908, 0x515f467b)}, | |
| /* Selection of randomly generated inputs that reach low/high d/e values in various configurations. */ | |
| {SECP256K1_SCALAR_CONST(0x1950d757, 0xb37a5809, 0x435059bb, 0x0bb8997e, 0x07e1e3c8, 0x5e5d7d2c, 0x6a0ed8e3, 0xdbde180e), | |
| SECP256K1_SCALAR_CONST(0xbf72af9b, 0x750309e2, 0x8dda230b, 0xfe432b93, 0x7e25e475, 0x4388251e, 0x633d894b, 0x3bcb6f8c)}, | |
| {SECP256K1_SCALAR_CONST(0x9bccf4e7, 0xc5a515e3, 0x50637aa9, 0xbb65a13f, 0x391749a1, 0x62de7d4e, 0xf6d7eabb, 0x3cd10ce0), | |
| SECP256K1_SCALAR_CONST(0xaf2d5623, 0xb6385a33, 0xcd0365be, 0x5e92a70d, 0x7f09179c, 0x3baaf30f, 0x8f9cc83b, 0x20092f67)}, | |
| {SECP256K1_SCALAR_CONST(0x73a57111, 0xb242952a, 0x5c5dee59, 0xf3be2ace, 0xa30a7659, 0xa46e5f47, 0xd21267b1, 0x39e642c9), | |
| SECP256K1_SCALAR_CONST(0xa711df07, 0xcbcf13ef, 0xd61cc6be, 0xbcd058ce, 0xb02cf157, 0x272d4a18, 0x86d0feb3, 0xcd5fa004)}, | |
| {SECP256K1_SCALAR_CONST(0x04884963, 0xce0580b1, 0xba547030, 0x3c691db3, 0x9cd2c84f, 0x24c7cebd, 0x97ebfdba, 0x3e785ec2), | |
| SECP256K1_SCALAR_CONST(0xaaaaaf14, 0xd7c99ba7, 0x517ce2c1, 0x78a28b4c, 0x3769a851, 0xe5c5a03d, 0x4cc28f33, 0x0ec4dc5d)}, | |
| {SECP256K1_SCALAR_CONST(0x1679ed49, 0x21f537b1, 0x815cb8ae, 0x9efc511c, 0x5b9fa037, 0x0b0f275e, 0x6c985281, 0x6c4a9905), | |
| SECP256K1_SCALAR_CONST(0xb14ac3d5, 0x62b52999, 0xef34ead1, 0xffca4998, 0x0294341a, 0x1f8172aa, 0xea1624f9, 0x302eea62)}, | |
| {SECP256K1_SCALAR_CONST(0x626b37c0, 0xf0057c35, 0xee982f83, 0x452a1fd3, 0xea826506, 0x48b08a9d, 0x1d2c4799, 0x4ad5f6ec), | |
| SECP256K1_SCALAR_CONST(0xe38643b7, 0x567bfc2f, 0x5d2f1c15, 0xe327239c, 0x07112443, 0x69509283, 0xfd98e77a, 0xdb71c1e8)}, | |
| {SECP256K1_SCALAR_CONST(0x1850a3a7, 0x759efc56, 0x54f287b2, 0x14d1234b, 0xe263bbc9, 0xcf4d8927, 0xd5f85f27, 0x965bd816), | |
| SECP256K1_SCALAR_CONST(0x3b071831, 0xcac9619a, 0xcceb0596, 0xf614d63b, 0x95d0db2f, 0xc6a00901, 0x8eaa2621, 0xabfa0009)}, | |
| {SECP256K1_SCALAR_CONST(0x94ae5d06, 0xa27dc400, 0x487d72be, 0xaa51ebed, 0xe475b5c0, 0xea675ffc, 0xf4df627a, 0xdca4222f), | |
| SECP256K1_SCALAR_CONST(0x01b412ed, 0xd7830956, 0x1532537e, 0xe5e3dc99, 0x8fd3930a, 0x54f8d067, 0x32ef5760, 0x594438a5)}, | |
| {SECP256K1_SCALAR_CONST(0x1f24278a, 0xb5bfe374, 0xa328dbbc, 0xebe35f48, 0x6620e009, 0xd58bb1b4, 0xb5a6bf84, 0x8815f63a), | |
| SECP256K1_SCALAR_CONST(0xfe928416, 0xca5ba2d3, 0xfde513da, 0x903a60c7, 0x9e58ad8a, 0x8783bee4, 0x083a3843, 0xa608c914)}, | |
| {SECP256K1_SCALAR_CONST(0xdc107d58, 0x274f6330, 0x67dba8bc, 0x26093111, 0x5201dfb8, 0x968ce3f5, 0xf34d1bd4, 0xf2146504), | |
| SECP256K1_SCALAR_CONST(0x660cfa90, 0x13c3d93e, 0x7023b1e5, 0xedd09e71, 0x6d9c9d10, 0x7a3d2cdb, 0xdd08edc3, 0xaa78fcfb)}, | |
| {SECP256K1_SCALAR_CONST(0x7cd1e905, 0xc6f02776, 0x2f551cc7, 0x5da61cff, 0x7da05389, 0x1119d5a4, 0x631c7442, 0x894fd4f7), | |
| SECP256K1_SCALAR_CONST(0xff20862a, 0x9d3b1a37, 0x1628803b, 0x3004ccae, 0xaa23282a, 0xa89a1109, 0xd94ece5e, 0x181bdc46)}, | |
| {SECP256K1_SCALAR_CONST(0x5b9dade8, 0x23d26c58, 0xcd12d818, 0x25b8ae97, 0x3dea04af, 0xf482c96b, 0xa062f254, 0x9e453640), | |
| SECP256K1_SCALAR_CONST(0x50c38800, 0x15fa53f4, 0xbe1e5392, 0x5c9b120a, 0x262c22c7, 0x18fa0816, 0x5f2baab4, 0x8cb5db46)}, | |
| {SECP256K1_SCALAR_CONST(0x11cdaeda, 0x969c464b, 0xef1f4ab0, 0x5b01d22e, 0x656fd098, 0x882bea84, 0x65cdbe7a, 0x0c19ff03), | |
| SECP256K1_SCALAR_CONST(0x1968d0fa, 0xac46f103, 0xb55f1f72, 0xb3820bed, 0xec6b359a, 0x4b1ae0ad, 0x7e38e1fb, 0x295ccdfb)}, | |
| {SECP256K1_SCALAR_CONST(0x2c351aa1, 0x26e91589, 0x194f8a1e, 0x06561f66, 0x0cb97b7f, 0x10914454, 0x134d1c03, 0x157266b4), | |
| SECP256K1_SCALAR_CONST(0xbe49ada6, 0x92bd8711, 0x41b176c4, 0xa478ba95, 0x14883434, 0x9d1cd6f3, 0xcc4b847d, 0x22af80f5)}, | |
| {SECP256K1_SCALAR_CONST(0x6ba07c6e, 0x13a60edb, 0x6247f5c3, 0x84b5fa56, 0x76fe3ec5, 0x80426395, 0xf65ec2ae, 0x623ba730), | |
| SECP256K1_SCALAR_CONST(0x25ac23f7, 0x418cd747, 0x98376f9d, 0x4a11c7bf, 0x24c8ebfe, 0x4c8a8655, 0x345f4f52, 0x1c515595)}, | |
| {SECP256K1_SCALAR_CONST(0x9397a712, 0x8abb6951, 0x2d4a3d54, 0x703b1c2a, 0x0661dca8, 0xd75c9b31, 0xaed4d24b, 0xd2ab2948), | |
| SECP256K1_SCALAR_CONST(0xc52e8bef, 0xd55ce3eb, 0x1c897739, 0xeb9fb606, 0x36b9cd57, 0x18c51cc2, 0x6a87489e, 0xffd0dcf3)}, | |
| {SECP256K1_SCALAR_CONST(0xe6a808cc, 0xeb437888, 0xe97798df, 0x4e224e44, 0x7e3b380a, 0x207c1653, 0x889f3212, 0xc6738b6f), | |
| SECP256K1_SCALAR_CONST(0x31f9ae13, 0xd1e08b20, 0x757a2e5e, 0x5243a0eb, 0x8ae35f73, 0x19bb6122, 0xb910f26b, 0xda70aa55)}, | |
| {SECP256K1_SCALAR_CONST(0xd0320548, 0xab0effe7, 0xa70779e0, 0x61a347a6, 0xb8c1e010, 0x9d5281f8, 0x2ee588a6, 0x80000000), | |
| SECP256K1_SCALAR_CONST(0x1541897e, 0x78195c90, 0x7583dd9e, 0x728b6100, 0xbce8bc6d, 0x7a53b471, 0x5dcd9e45, 0x4425fcaf)}, | |
| {SECP256K1_SCALAR_CONST(0x93d623f1, 0xd45b50b0, 0x796e9186, 0x9eac9407, 0xd30edc20, 0xef6304cf, 0x250494e7, 0xba503de9), | |
| SECP256K1_SCALAR_CONST(0x7026d638, 0x1178b548, 0x92043952, 0x3c7fb47c, 0xcd3ea236, 0x31d82b01, 0x612fc387, 0x80b9b957)}, | |
| {SECP256K1_SCALAR_CONST(0xf860ab39, 0x55f5d412, 0xa4d73bcc, 0x3b48bd90, 0xc248ffd3, 0x13ca10be, 0x8fba84cc, 0xdd28d6a3), | |
| SECP256K1_SCALAR_CONST(0x5c32fc70, 0xe0b15d67, 0x76694700, 0xfe62be4d, 0xeacdb229, 0x7a4433d9, 0x52155cd0, 0x7649ab59)}, | |
| {SECP256K1_SCALAR_CONST(0x4e41311c, 0x0800af58, 0x7a690a8e, 0xe175c9ba, 0x6981ab73, 0xac532ea8, 0x5c1f5e63, 0x6ac1f189), | |
| SECP256K1_SCALAR_CONST(0xfffffff9, 0xd075982c, 0x7fbd3825, 0xc05038a2, 0x4533b91f, 0x94ec5f45, 0xb280b28f, 0x842324dc)}, | |
| {SECP256K1_SCALAR_CONST(0x48e473bf, 0x3555eade, 0xad5d7089, 0x2424c4e4, 0x0a99397c, 0x2dc796d8, 0xb7a43a69, 0xd0364141), | |
| SECP256K1_SCALAR_CONST(0x634976b2, 0xa0e47895, 0x1ec38593, 0x266d6fd0, 0x6f602644, 0x9bb762f1, 0x7180c704, 0xe23a4daa)}, | |
| {SECP256K1_SCALAR_CONST(0xbe83878d, 0x3292fc54, 0x26e71c62, 0x556ccedc, 0x7cbb8810, 0x4032a720, 0x34ead589, 0xe4d6bd13), | |
| SECP256K1_SCALAR_CONST(0x6cd150ad, 0x25e59d0f, 0x74cbae3d, 0x6377534a, 0x1e6562e8, 0xb71b9d18, 0xe1e5d712, 0x8480abb3)}, | |
| {SECP256K1_SCALAR_CONST(0xcdddf2e5, 0xefc15f88, 0xc9ee06de, 0x8a846ca9, 0x28561581, 0x68daa5fb, 0xd1cf3451, 0xeb1782d0), | |
| SECP256K1_SCALAR_CONST(0xffffffd9, 0xed8d2af4, 0x993c865a, 0x23e9681a, 0x3ca3a3dc, 0xe6d5a46e, 0xbd86bd87, 0x61b55c70)}, | |
| {SECP256K1_SCALAR_CONST(0xb6a18f1f, 0x04872df9, 0x08165ec4, 0x319ca19c, 0x6c0359ab, 0x1f7118fb, 0xc2ef8082, 0xca8b7785), | |
| SECP256K1_SCALAR_CONST(0xff55b19b, 0x0f1ac78c, 0x0f0c88c2, 0x2358d5ad, 0x5f455e4e, 0x3330b72f, 0x274dc153, 0xffbf272b)}, | |
| {SECP256K1_SCALAR_CONST(0xea4898e5, 0x30eba3e8, 0xcf0e5c3d, 0x06ec6844, 0x01e26fb6, 0x75636225, 0xc5d08f4c, 0x1decafa0), | |
| SECP256K1_SCALAR_CONST(0xe5a014a8, 0xe3c4ec1e, 0xea4f9b32, 0xcfc7b386, 0x00630806, 0x12c08d02, 0x6407ccc2, 0xb067d90e)}, | |
| {SECP256K1_SCALAR_CONST(0x70e9aea9, 0x7e933af0, 0x8a23bfab, 0x23e4b772, 0xff951863, 0x5ffcf47d, 0x6bebc918, 0x2ca58265), | |
| SECP256K1_SCALAR_CONST(0xf4e00006, 0x81bc6441, 0x4eb6ec02, 0xc194a859, 0x80ad7c48, 0xba4e9afb, 0x8b6bdbe0, 0x989d8f77)}, | |
| {SECP256K1_SCALAR_CONST(0x3c56c774, 0x46efe6f0, 0xe93618b8, 0xf9b5a846, 0xd247df61, 0x83b1e215, 0x06dc8bcc, 0xeefc1bf5), | |
| SECP256K1_SCALAR_CONST(0xfff8937a, 0x2cd9586b, 0x43c25e57, 0xd1cefa7a, 0x9fb91ed3, 0x95b6533d, 0x8ad0de5b, 0xafb93f00)}, | |
| {SECP256K1_SCALAR_CONST(0xfb5c2772, 0x5cb30e83, 0xe38264df, 0xe4e3ebf3, 0x392aa92e, 0xa68756a1, 0x51279ac5, 0xb50711a8), | |
| SECP256K1_SCALAR_CONST(0x000013af, 0x1105bfe7, 0xa6bbd7fb, 0x3d638f99, 0x3b266b02, 0x072fb8bc, 0x39251130, 0x2e0fd0ea)} | |
| }; | |
| int i, var, testrand; | |
| unsigned char b32[32]; | |
| secp256k1_fe x_fe; | |
| secp256k1_scalar x_scalar; | |
| memset(b32, 0, sizeof(b32)); | |
| /* Test fixed test cases through test_inverse_{scalar,field}, both ways. */ | |
| for (i = 0; (size_t)i < sizeof(fe_cases)/sizeof(fe_cases[0]); ++i) { | |
| for (var = 0; var <= 1; ++var) { | |
| test_inverse_field(&x_fe, &fe_cases[i][0], var); | |
| CHECK(fe_equal(&x_fe, &fe_cases[i][1])); | |
| test_inverse_field(&x_fe, &fe_cases[i][1], var); | |
| CHECK(fe_equal(&x_fe, &fe_cases[i][0])); | |
| } | |
| } | |
| for (i = 0; (size_t)i < sizeof(scalar_cases)/sizeof(scalar_cases[0]); ++i) { | |
| for (var = 0; var <= 1; ++var) { | |
| test_inverse_scalar(&x_scalar, &scalar_cases[i][0], var); | |
| CHECK(secp256k1_scalar_eq(&x_scalar, &scalar_cases[i][1])); | |
| test_inverse_scalar(&x_scalar, &scalar_cases[i][1], var); | |
| CHECK(secp256k1_scalar_eq(&x_scalar, &scalar_cases[i][0])); | |
| } | |
| } | |
| /* Test inputs 0..999 and their respective negations. */ | |
| for (i = 0; i < 1000; ++i) { | |
| b32[31] = i & 0xff; | |
| b32[30] = (i >> 8) & 0xff; | |
| secp256k1_scalar_set_b32(&x_scalar, b32, NULL); | |
| secp256k1_fe_set_b32_mod(&x_fe, b32); | |
| for (var = 0; var <= 1; ++var) { | |
| test_inverse_scalar(NULL, &x_scalar, var); | |
| test_inverse_field(NULL, &x_fe, var); | |
| } | |
| secp256k1_scalar_negate(&x_scalar, &x_scalar); | |
| secp256k1_fe_negate(&x_fe, &x_fe, 1); | |
| for (var = 0; var <= 1; ++var) { | |
| test_inverse_scalar(NULL, &x_scalar, var); | |
| test_inverse_field(NULL, &x_fe, var); | |
| } | |
| } | |
| /* test 128*count random inputs; half with testrand256_test, half with testrand256 */ | |
| for (testrand = 0; testrand <= 1; ++testrand) { | |
| for (i = 0; i < 64 * COUNT; ++i) { | |
| (testrand ? testrand256_test : testrand256)(b32); | |
| secp256k1_scalar_set_b32(&x_scalar, b32, NULL); | |
| secp256k1_fe_set_b32_mod(&x_fe, b32); | |
| for (var = 0; var <= 1; ++var) { | |
| test_inverse_scalar(NULL, &x_scalar, var); | |
| test_inverse_field(NULL, &x_fe, var); | |
| } | |
| } | |
| } | |
| } | |
| | |
| /***** HSORT TESTS *****/ | |
| | |
| static void test_heap_swap(void) { | |
| unsigned char a[600]; | |
| unsigned char e[sizeof(a)]; | |
| memset(a, 21, 200); | |
| memset(a + 200, 99, 200); | |
| memset(a + 400, 42, 200); | |
| memset(e, 42, 200); | |
| memset(e + 200, 99, 200); | |
| memset(e + 400, 21, 200); | |
| secp256k1_heap_swap(a, 0, 2, 200); | |
| CHECK(secp256k1_memcmp_var(a, e, sizeof(a)) == 0); | |
| } | |
| | |
| static void test_hsort_is_sorted(unsigned char *elements, size_t n, size_t len) { | |
| size_t i; | |
| for (i = 1; i < n; i++) { | |
| CHECK(secp256k1_memcmp_var(&elements[(i-1) * len], &elements[i * len], len) <= 0); | |
| } | |
| } | |
| | |
| struct test_hsort_cmp_data { | |
| size_t counter; | |
| size_t element_len; | |
| }; | |
| | |
| | |
| static int test_hsort_cmp(const void *ele1, const void *ele2, void *data) { | |
| struct test_hsort_cmp_data *d = (struct test_hsort_cmp_data *) data; | |
| d->counter += 1; | |
| return secp256k1_memcmp_var((unsigned char *)ele1, (unsigned char *)ele2, d->element_len); | |
| } | |
| | |
| #define NUM 65 | |
| #define MAX_ELEMENT_LEN 65 | |
| static void test_hsort(size_t element_len) { | |
| unsigned char elements[NUM * MAX_ELEMENT_LEN] = { 0 }; | |
| struct test_hsort_cmp_data data; | |
| int i; | |
| | |
| VERIFY_CHECK(element_len <= MAX_ELEMENT_LEN); | |
| data.counter = 0; | |
| data.element_len = element_len; | |
| | |
| secp256k1_hsort(elements, 0, element_len, test_hsort_cmp, &data); | |
| CHECK(data.counter == 0); | |
| secp256k1_hsort(elements, 1, element_len, test_hsort_cmp, &data); | |
| CHECK(data.counter == 0); | |
| secp256k1_hsort(elements, NUM, element_len, test_hsort_cmp, &data); | |
| CHECK(data.counter >= NUM - 1); | |
| test_hsort_is_sorted(elements, NUM, element_len); | |
| | |
| /* Test hsort with array of random length n */ | |
| for (i = 0; i < COUNT; i++) { | |
| int n = testrand_int(NUM); | |
| testrand_bytes_test(elements, n*element_len); | |
| secp256k1_hsort(elements, n, element_len, test_hsort_cmp, &data); | |
| test_hsort_is_sorted(elements, n, element_len); | |
| } | |
| } | |
| #undef NUM | |
| #undef MAX_ELEMENT_LEN | |
| | |
| | |
| static void run_hsort_tests(void) { | |
| test_heap_swap(); | |
| test_hsort(1); | |
| test_hsort(64); | |
| test_hsort(65); | |
| } | |
| | |
| /***** GROUP TESTS *****/ | |
| | |
| /* This compares jacobian points including their Z, not just their geometric meaning. */ | |
| static int gej_xyz_equals_gej(const secp256k1_gej *a, const secp256k1_gej *b) { | |
| secp256k1_gej a2; | |
| secp256k1_gej b2; | |
| int ret = 1; | |
| ret &= a->infinity == b->infinity; | |
| if (ret && !a->infinity) { | |
| a2 = *a; | |
| b2 = *b; | |
| secp256k1_fe_normalize(&a2.x); | |
| secp256k1_fe_normalize(&a2.y); | |
| secp256k1_fe_normalize(&a2.z); | |
| secp256k1_fe_normalize(&b2.x); | |
| secp256k1_fe_normalize(&b2.y); | |
| secp256k1_fe_normalize(&b2.z); | |
| ret &= secp256k1_fe_cmp_var(&a2.x, &b2.x) == 0; | |
| ret &= secp256k1_fe_cmp_var(&a2.y, &b2.y) == 0; | |
| ret &= secp256k1_fe_cmp_var(&a2.z, &b2.z) == 0; | |
| } | |
| return ret; | |
| } | |
| | |
| static void test_ge(void) { | |
| int i, i1; | |
| int runs = 6; | |
| /* 25 points are used: | |
| * - infinity | |
| * - for each of four random points p1 p2 p3 p4, we add the point, its | |
| * negation, and then those two again but with randomized Z coordinate. | |
| * - The same is then done for lambda*p1 and lambda^2*p1. | |
| */ | |
| secp256k1_ge *ge = (secp256k1_ge *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_ge) * (1 + 4 * runs)); | |
| secp256k1_gej *gej = (secp256k1_gej *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_gej) * (1 + 4 * runs)); | |
| secp256k1_fe zf, r; | |
| secp256k1_fe zfi2, zfi3; | |
| | |
| secp256k1_gej_set_infinity(&gej[0]); | |
| secp256k1_ge_set_infinity(&ge[0]); | |
| for (i = 0; i < runs; i++) { | |
| int j, k; | |
| secp256k1_ge g; | |
| testutil_random_ge_test(&g); | |
| if (i >= runs - 2) { | |
| secp256k1_ge_mul_lambda(&g, &ge[1]); | |
| CHECK(!secp256k1_ge_eq_var(&g, &ge[1])); | |
| } | |
| if (i >= runs - 1) { | |
| secp256k1_ge_mul_lambda(&g, &g); | |
| } | |
| ge[1 + 4 * i] = g; | |
| ge[2 + 4 * i] = g; | |
| secp256k1_ge_neg(&ge[3 + 4 * i], &g); | |
| secp256k1_ge_neg(&ge[4 + 4 * i], &g); | |
| secp256k1_gej_set_ge(&gej[1 + 4 * i], &ge[1 + 4 * i]); | |
| testutil_random_ge_jacobian_test(&gej[2 + 4 * i], &ge[2 + 4 * i]); | |
| secp256k1_gej_set_ge(&gej[3 + 4 * i], &ge[3 + 4 * i]); | |
| testutil_random_ge_jacobian_test(&gej[4 + 4 * i], &ge[4 + 4 * i]); | |
| for (j = 0; j < 4; j++) { | |
| testutil_random_ge_x_magnitude(&ge[1 + j + 4 * i]); | |
| testutil_random_ge_y_magnitude(&ge[1 + j + 4 * i]); | |
| testutil_random_gej_x_magnitude(&gej[1 + j + 4 * i]); | |
| testutil_random_gej_y_magnitude(&gej[1 + j + 4 * i]); | |
| testutil_random_gej_z_magnitude(&gej[1 + j + 4 * i]); | |
| } | |
| | |
| for (j = 0; j < 4; ++j) { | |
| for (k = 0; k < 4; ++k) { | |
| int expect_equal = (j >> 1) == (k >> 1); | |
| CHECK(secp256k1_ge_eq_var(&ge[1 + j + 4 * i], &ge[1 + k + 4 * i]) == expect_equal); | |
| CHECK(secp256k1_gej_eq_var(&gej[1 + j + 4 * i], &gej[1 + k + 4 * i]) == expect_equal); | |
| CHECK(secp256k1_gej_eq_ge_var(&gej[1 + j + 4 * i], &ge[1 + k + 4 * i]) == expect_equal); | |
| CHECK(secp256k1_gej_eq_ge_var(&gej[1 + k + 4 * i], &ge[1 + j + 4 * i]) == expect_equal); | |
| } | |
| } | |
| } | |
| | |
| /* Generate random zf, and zfi2 = 1/zf^2, zfi3 = 1/zf^3 */ | |
| testutil_random_fe_non_zero_test(&zf); | |
| testutil_random_fe_magnitude(&zf, 8); | |
| secp256k1_fe_inv_var(&zfi3, &zf); | |
| secp256k1_fe_sqr(&zfi2, &zfi3); | |
| secp256k1_fe_mul(&zfi3, &zfi3, &zfi2); | |
| | |
| /* Generate random r */ | |
| testutil_random_fe_non_zero_test(&r); | |
| | |
| for (i1 = 0; i1 < 1 + 4 * runs; i1++) { | |
| int i2; | |
| for (i2 = 0; i2 < 1 + 4 * runs; i2++) { | |
| /* Compute reference result using gej + gej (var). */ | |
| secp256k1_gej refj, resj; | |
| secp256k1_ge ref; | |
| secp256k1_fe zr; | |
| secp256k1_gej_add_var(&refj, &gej[i1], &gej[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr); | |
| /* Check Z ratio. */ | |
| if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&refj)) { | |
| secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z); | |
| CHECK(secp256k1_fe_equal(&zrz, &refj.z)); | |
| } | |
| secp256k1_ge_set_gej_var(&ref, &refj); | |
| | |
| /* Test gej + ge with Z ratio result (var). */ | |
| secp256k1_gej_add_ge_var(&resj, &gej[i1], &ge[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr); | |
| CHECK(secp256k1_gej_eq_ge_var(&resj, &ref)); | |
| if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&resj)) { | |
| secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z); | |
| CHECK(secp256k1_fe_equal(&zrz, &resj.z)); | |
| } | |
| | |
| /* Test gej + ge (var, with additional Z factor). */ | |
| { | |
| secp256k1_ge ge2_zfi = ge[i2]; /* the second term with x and y rescaled for z = 1/zf */ | |
| secp256k1_fe_mul(&ge2_zfi.x, &ge2_zfi.x, &zfi2); | |
| secp256k1_fe_mul(&ge2_zfi.y, &ge2_zfi.y, &zfi3); | |
| testutil_random_ge_x_magnitude(&ge2_zfi); | |
| testutil_random_ge_y_magnitude(&ge2_zfi); | |
| secp256k1_gej_add_zinv_var(&resj, &gej[i1], &ge2_zfi, &zf); | |
| CHECK(secp256k1_gej_eq_ge_var(&resj, &ref)); | |
| } | |
| | |
| /* Test gej + ge (const). */ | |
| if (i2 != 0) { | |
| /* secp256k1_gej_add_ge does not support its second argument being infinity. */ | |
| secp256k1_gej_add_ge(&resj, &gej[i1], &ge[i2]); | |
| CHECK(secp256k1_gej_eq_ge_var(&resj, &ref)); | |
| } | |
| | |
| /* Test doubling (var). */ | |
| if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 == ((i2 + 3)%4)/2)) { | |
| secp256k1_fe zr2; | |
| /* Normal doubling with Z ratio result. */ | |
| secp256k1_gej_double_var(&resj, &gej[i1], &zr2); | |
| CHECK(secp256k1_gej_eq_ge_var(&resj, &ref)); | |
| /* Check Z ratio. */ | |
| secp256k1_fe_mul(&zr2, &zr2, &gej[i1].z); | |
| CHECK(secp256k1_fe_equal(&zr2, &resj.z)); | |
| /* Normal doubling. */ | |
| secp256k1_gej_double_var(&resj, &gej[i2], NULL); | |
| CHECK(secp256k1_gej_eq_ge_var(&resj, &ref)); | |
| /* Constant-time doubling. */ | |
| secp256k1_gej_double(&resj, &gej[i2]); | |
| CHECK(secp256k1_gej_eq_ge_var(&resj, &ref)); | |
| } | |
| | |
| /* Test adding opposites. */ | |
| if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 != ((i2 + 3)%4)/2)) { | |
| CHECK(secp256k1_ge_is_infinity(&ref)); | |
| } | |
| | |
| /* Test adding infinity. */ | |
| if (i1 == 0) { | |
| CHECK(secp256k1_ge_is_infinity(&ge[i1])); | |
| CHECK(secp256k1_gej_is_infinity(&gej[i1])); | |
| CHECK(secp256k1_gej_eq_ge_var(&gej[i2], &ref)); | |
| } | |
| if (i2 == 0) { | |
| CHECK(secp256k1_ge_is_infinity(&ge[i2])); | |
| CHECK(secp256k1_gej_is_infinity(&gej[i2])); | |
| CHECK(secp256k1_gej_eq_ge_var(&gej[i1], &ref)); | |
| } | |
| } | |
| } | |
| | |
| /* Test adding all points together in random order equals infinity. */ | |
| { | |
| secp256k1_gej sum = SECP256K1_GEJ_CONST_INFINITY; | |
| secp256k1_gej *gej_shuffled = (secp256k1_gej *)checked_malloc(&CTX->error_callback, (4 * runs + 1) * sizeof(secp256k1_gej)); | |
| for (i = 0; i < 4 * runs + 1; i++) { | |
| gej_shuffled[i] = gej[i]; | |
| } | |
| for (i = 0; i < 4 * runs + 1; i++) { | |
| int swap = i + testrand_int(4 * runs + 1 - i); | |
| if (swap != i) { | |
| secp256k1_gej t = gej_shuffled[i]; | |
| gej_shuffled[i] = gej_shuffled[swap]; | |
| gej_shuffled[swap] = t; | |
| } | |
| } | |
| for (i = 0; i < 4 * runs + 1; i++) { | |
| secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i], NULL); | |
| } | |
| CHECK(secp256k1_gej_is_infinity(&sum)); | |
| free(gej_shuffled); | |
| } | |
| | |
| /* Test batch gej -> ge conversion without known z ratios. */ | |
| { | |
| secp256k1_ge *ge_set_all_var = (secp256k1_ge *)checked_malloc(&CTX->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge)); | |
| secp256k1_ge *ge_set_all = (secp256k1_ge *)checked_malloc(&CTX->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge)); | |
| secp256k1_ge_set_all_gej_var(&ge_set_all_var[0], &gej[0], 4 * runs + 1); | |
| for (i = 0; i < 4 * runs + 1; i++) { | |
| secp256k1_fe s; | |
| testutil_random_fe_non_zero(&s); | |
| secp256k1_gej_rescale(&gej[i], &s); | |
| CHECK(secp256k1_gej_eq_ge_var(&gej[i], &ge_set_all_var[i])); | |
| } | |
| | |
| /* Skip infinity at &gej[0]. */ | |
| secp256k1_ge_set_all_gej(&ge_set_all[1], &gej[1], 4 * runs); | |
| for (i = 1; i < 4 * runs + 1; i++) { | |
| secp256k1_fe s; | |
| testutil_random_fe_non_zero(&s); | |
| secp256k1_gej_rescale(&gej[i], &s); | |
| CHECK(secp256k1_gej_eq_ge_var(&gej[i], &ge_set_all[i])); | |
| CHECK(secp256k1_ge_eq_var(&ge_set_all_var[i], &ge_set_all[i])); | |
| } | |
| | |
| /* Test with an array of length 1. */ | |
| secp256k1_ge_set_all_gej_var(ge_set_all_var, &gej[1], 1); | |
| secp256k1_ge_set_all_gej(ge_set_all, &gej[1], 1); | |
| CHECK(secp256k1_gej_eq_ge_var(&gej[1], &ge_set_all_var[1])); | |
| CHECK(secp256k1_gej_eq_ge_var(&gej[1], &ge_set_all[1])); | |
| CHECK(secp256k1_ge_eq_var(&ge_set_all_var[1], &ge_set_all[1])); | |
| | |
| /* Test with an array of length 0. */ | |
| secp256k1_ge_set_all_gej_var(NULL, NULL, 0); | |
| secp256k1_ge_set_all_gej(NULL, NULL, 0); | |
| | |
| free(ge_set_all_var); | |
| free(ge_set_all); | |
| } | |
| | |
| /* Test that all elements have X coordinates on the curve. */ | |
| for (i = 1; i < 4 * runs + 1; i++) { | |
| secp256k1_fe n; | |
| CHECK(secp256k1_ge_x_on_curve_var(&ge[i].x)); | |
| /* And the same holds after random rescaling. */ | |
| secp256k1_fe_mul(&n, &zf, &ge[i].x); | |
| CHECK(secp256k1_ge_x_frac_on_curve_var(&n, &zf)); | |
| } | |
| | |
| /* Test correspondence of secp256k1_ge_x{,_frac}_on_curve_var with ge_set_xo. */ | |
| { | |
| secp256k1_fe n; | |
| secp256k1_ge q; | |
| int ret_on_curve, ret_frac_on_curve, ret_set_xo; | |
| secp256k1_fe_mul(&n, &zf, &r); | |
| ret_on_curve = secp256k1_ge_x_on_curve_var(&r); | |
| ret_frac_on_curve = secp256k1_ge_x_frac_on_curve_var(&n, &zf); | |
| ret_set_xo = secp256k1_ge_set_xo_var(&q, &r, 0); | |
| CHECK(ret_on_curve == ret_frac_on_curve); | |
| CHECK(ret_on_curve == ret_set_xo); | |
| if (ret_set_xo) CHECK(secp256k1_fe_equal(&r, &q.x)); | |
| } | |
| | |
| /* Test batch gej -> ge conversion with many infinities. */ | |
| for (i = 0; i < 4 * runs + 1; i++) { | |
| int odd; | |
| testutil_random_ge_test(&ge[i]); | |
| odd = secp256k1_fe_is_odd(&ge[i].x); | |
| CHECK(odd == 0 || odd == 1); | |
| /* randomly set half the points to infinity */ | |
| if (odd == i % 2) { | |
| secp256k1_ge_set_infinity(&ge[i]); | |
| } | |
| secp256k1_gej_set_ge(&gej[i], &ge[i]); | |
| } | |
| /* batch convert */ | |
| secp256k1_ge_set_all_gej_var(ge, gej, 4 * runs + 1); | |
| /* check result */ | |
| for (i = 0; i < 4 * runs + 1; i++) { | |
| CHECK(secp256k1_gej_eq_ge_var(&gej[i], &ge[i])); | |
| } | |
| | |
| /* Test batch gej -> ge conversion with all infinities. */ | |
| for (i = 0; i < 4 * runs + 1; i++) { | |
| secp256k1_gej_set_infinity(&gej[i]); | |
| } | |
| /* batch convert */ | |
| secp256k1_ge_set_all_gej_var(ge, gej, 4 * runs + 1); | |
| /* check result */ | |
| for (i = 0; i < 4 * runs + 1; i++) { | |
| CHECK(secp256k1_ge_is_infinity(&ge[i])); | |
| } | |
| | |
| free(ge); | |
| free(gej); | |
| } | |
| | |
| static void test_initialized_inf(void) { | |
| secp256k1_ge p; | |
| secp256k1_gej pj, npj, infj1, infj2, infj3; | |
| secp256k1_fe zinv; | |
| | |
| /* Test that adding P+(-P) results in a fully initialized infinity*/ | |
| testutil_random_ge_test(&p); | |
| secp256k1_gej_set_ge(&pj, &p); | |
| secp256k1_gej_neg(&npj, &pj); | |
| | |
| secp256k1_gej_add_var(&infj1, &pj, &npj, NULL); | |
| CHECK(secp256k1_gej_is_infinity(&infj1)); | |
| CHECK(secp256k1_fe_is_zero(&infj1.x)); | |
| CHECK(secp256k1_fe_is_zero(&infj1.y)); | |
| CHECK(secp256k1_fe_is_zero(&infj1.z)); | |
| | |
| secp256k1_gej_add_ge_var(&infj2, &npj, &p, NULL); | |
| CHECK(secp256k1_gej_is_infinity(&infj2)); | |
| CHECK(secp256k1_fe_is_zero(&infj2.x)); | |
| CHECK(secp256k1_fe_is_zero(&infj2.y)); | |
| CHECK(secp256k1_fe_is_zero(&infj2.z)); | |
| | |
| secp256k1_fe_set_int(&zinv, 1); | |
| secp256k1_gej_add_zinv_var(&infj3, &npj, &p, &zinv); | |
| CHECK(secp256k1_gej_is_infinity(&infj3)); | |
| CHECK(secp256k1_fe_is_zero(&infj3.x)); | |
| CHECK(secp256k1_fe_is_zero(&infj3.y)); | |
| CHECK(secp256k1_fe_is_zero(&infj3.z)); | |
| | |
| | |
| } | |
| | |
| static void test_add_neg_y_diff_x(void) { | |
| /* The point of this test is to check that we can add two points | |
| * whose y-coordinates are negatives of each other but whose x | |
| * coordinates differ. If the x-coordinates were the same, these | |
| * points would be negatives of each other and their sum is | |
| * infinity. This is cool because it "covers up" any degeneracy | |
| * in the addition algorithm that would cause the xy coordinates | |
| * of the sum to be wrong (since infinity has no xy coordinates). | |
| * HOWEVER, if the x-coordinates are different, infinity is the | |
| * wrong answer, and such degeneracies are exposed. This is the | |
| * root of https://github.com/bitcoin-core/secp256k1/issues/257 | |
| * which this test is a regression test for. | |
| * | |
| * These points were generated in sage as | |
| * | |
| * load("secp256k1_params.sage") | |
| * | |
| * # random "bad pair" | |
| * P = C.random_element() | |
| * Q = -int(LAMBDA) * P | |
| * print(" P: %x %x" % P.xy()) | |
| * print(" Q: %x %x" % Q.xy()) | |
| * print("P + Q: %x %x" % (P + Q).xy()) | |
| */ | |
| secp256k1_gej aj = SECP256K1_GEJ_CONST( | |
| 0x8d24cd95, 0x0a355af1, 0x3c543505, 0x44238d30, | |
| 0x0643d79f, 0x05a59614, 0x2f8ec030, 0xd58977cb, | |
| 0x001e337a, 0x38093dcd, 0x6c0f386d, 0x0b1293a8, | |
| 0x4d72c879, 0xd7681924, 0x44e6d2f3, 0x9190117d | |
| ); | |
| secp256k1_gej bj = SECP256K1_GEJ_CONST( | |
| 0xc7b74206, 0x1f788cd9, 0xabd0937d, 0x164a0d86, | |
| 0x95f6ff75, 0xf19a4ce9, 0xd013bd7b, 0xbf92d2a7, | |
| 0xffe1cc85, 0xc7f6c232, 0x93f0c792, 0xf4ed6c57, | |
| 0xb28d3786, 0x2897e6db, 0xbb192d0b, 0x6e6feab2 | |
| ); | |
| secp256k1_gej sumj = SECP256K1_GEJ_CONST( | |
| 0x671a63c0, 0x3efdad4c, 0x389a7798, 0x24356027, | |
| 0xb3d69010, 0x278625c3, 0x5c86d390, 0x184a8f7a, | |
| 0x5f6409c2, 0x2ce01f2b, 0x511fd375, 0x25071d08, | |
| 0xda651801, 0x70e95caf, 0x8f0d893c, 0xbed8fbbe | |
| ); | |
| secp256k1_ge b; | |
| secp256k1_gej resj; | |
| secp256k1_ge res; | |
| secp256k1_ge_set_gej(&b, &bj); | |
| | |
| secp256k1_gej_add_var(&resj, &aj, &bj, NULL); | |
| secp256k1_ge_set_gej(&res, &resj); | |
| CHECK(secp256k1_gej_eq_ge_var(&sumj, &res)); | |
| | |
| secp256k1_gej_add_ge(&resj, &aj, &b); | |
| secp256k1_ge_set_gej(&res, &resj); | |
| CHECK(secp256k1_gej_eq_ge_var(&sumj, &res)); | |
| | |
| secp256k1_gej_add_ge_var(&resj, &aj, &b, NULL); | |
| secp256k1_ge_set_gej(&res, &resj); | |
| CHECK(secp256k1_gej_eq_ge_var(&sumj, &res)); | |
| } | |
| | |
| static void test_ge_bytes(void) { | |
| int i; | |
| | |
| for (i = 0; i < COUNT + 1; i++) { | |
| unsigned char buf[64]; | |
| secp256k1_ge p, q; | |
| | |
| if (i == 0) { | |
| secp256k1_ge_set_infinity(&p); | |
| } else { | |
| testutil_random_ge_test(&p); | |
| } | |
| | |
| if (!secp256k1_ge_is_infinity(&p)) { | |
| secp256k1_ge_to_bytes(buf, &p); | |
| | |
| secp256k1_ge_from_bytes(&q, buf); | |
| CHECK(secp256k1_ge_eq_var(&p, &q)); | |
| | |
| secp256k1_ge_from_bytes_ext(&q, buf); | |
| CHECK(secp256k1_ge_eq_var(&p, &q)); | |
| } | |
| secp256k1_ge_to_bytes_ext(buf, &p); | |
| secp256k1_ge_from_bytes_ext(&q, buf); | |
| CHECK(secp256k1_ge_eq_var(&p, &q)); | |
| } | |
| } | |
| | |
| static void run_ge(void) { | |
| int i; | |
| for (i = 0; i < COUNT * 32; i++) { | |
| test_ge(); | |
| } | |
| test_add_neg_y_diff_x(); | |
| test_initialized_inf(); | |
| test_ge_bytes(); | |
| } | |
| | |
| static void test_gej_cmov(const secp256k1_gej *a, const secp256k1_gej *b) { | |
| secp256k1_gej t = *a; | |
| secp256k1_gej_cmov(&t, b, 0); | |
| CHECK(gej_xyz_equals_gej(&t, a)); | |
| secp256k1_gej_cmov(&t, b, 1); | |
| CHECK(gej_xyz_equals_gej(&t, b)); | |
| } | |
| | |
| static void run_gej(void) { | |
| int i; | |
| secp256k1_gej a, b; | |
| | |
| /* Tests for secp256k1_gej_cmov */ | |
| for (i = 0; i < COUNT; i++) { | |
| secp256k1_gej_set_infinity(&a); | |
| secp256k1_gej_set_infinity(&b); | |
| test_gej_cmov(&a, &b); | |
| | |
| testutil_random_gej_test(&a); | |
| test_gej_cmov(&a, &b); | |
| test_gej_cmov(&b, &a); | |
| | |
| b = a; | |
| test_gej_cmov(&a, &b); | |
| | |
| testutil_random_gej_test(&b); | |
| test_gej_cmov(&a, &b); | |
| test_gej_cmov(&b, &a); | |
| } | |
| | |
| /* Tests for secp256k1_gej_eq_var */ | |
| for (i = 0; i < COUNT; i++) { | |
| secp256k1_fe fe; | |
| testutil_random_gej_test(&a); | |
| testutil_random_gej_test(&b); | |
| CHECK(!secp256k1_gej_eq_var(&a, &b)); | |
| | |
| b = a; | |
| testutil_random_fe_non_zero_test(&fe); | |
| secp256k1_gej_rescale(&a, &fe); | |
| CHECK(secp256k1_gej_eq_var(&a, &b)); | |
| } | |
| } | |
| | |
| static void test_ec_combine(void) { | |
| secp256k1_scalar sum = secp256k1_scalar_zero; | |
| secp256k1_pubkey data[6]; | |
| const secp256k1_pubkey* d[6]; | |
| secp256k1_pubkey sd; | |
| secp256k1_pubkey sd2; | |
| secp256k1_gej Qj; | |
| secp256k1_ge Q; | |
| int i; | |
| for (i = 1; i <= 6; i++) { | |
| secp256k1_scalar s; | |
| testutil_random_scalar_order_test(&s); | |
| secp256k1_scalar_add(&sum, &sum, &s); | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &Qj, &s); | |
| secp256k1_ge_set_gej(&Q, &Qj); | |
| secp256k1_pubkey_save(&data[i - 1], &Q); | |
| d[i - 1] = &data[i - 1]; | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &Qj, &sum); | |
| secp256k1_ge_set_gej(&Q, &Qj); | |
| secp256k1_pubkey_save(&sd, &Q); | |
| CHECK(secp256k1_ec_pubkey_combine(CTX, &sd2, d, i) == 1); | |
| CHECK(secp256k1_memcmp_var(&sd, &sd2, sizeof(sd)) == 0); | |
| } | |
| } | |
| | |
| static void run_ec_combine(void) { | |
| int i; | |
| for (i = 0; i < COUNT * 8; i++) { | |
| test_ec_combine(); | |
| } | |
| } | |
| | |
| static void test_group_decompress(const secp256k1_fe* x) { | |
| /* The input itself, normalized. */ | |
| secp256k1_fe fex = *x; | |
| /* Results of set_xo_var(..., 0), set_xo_var(..., 1). */ | |
| secp256k1_ge ge_even, ge_odd; | |
| /* Return values of the above calls. */ | |
| int res_even, res_odd; | |
| | |
| secp256k1_fe_normalize_var(&fex); | |
| | |
| res_even = secp256k1_ge_set_xo_var(&ge_even, &fex, 0); | |
| res_odd = secp256k1_ge_set_xo_var(&ge_odd, &fex, 1); | |
| | |
| CHECK(res_even == res_odd); | |
| | |
| if (res_even) { | |
| secp256k1_fe_normalize_var(&ge_odd.x); | |
| secp256k1_fe_normalize_var(&ge_even.x); | |
| secp256k1_fe_normalize_var(&ge_odd.y); | |
| secp256k1_fe_normalize_var(&ge_even.y); | |
| | |
| /* No infinity allowed. */ | |
| CHECK(!ge_even.infinity); | |
| CHECK(!ge_odd.infinity); | |
| | |
| /* Check that the x coordinates check out. */ | |
| CHECK(secp256k1_fe_equal(&ge_even.x, x)); | |
| CHECK(secp256k1_fe_equal(&ge_odd.x, x)); | |
| | |
| /* Check odd/even Y in ge_odd, ge_even. */ | |
| CHECK(secp256k1_fe_is_odd(&ge_odd.y)); | |
| CHECK(!secp256k1_fe_is_odd(&ge_even.y)); | |
| } | |
| } | |
| | |
| static void run_group_decompress(void) { | |
| int i; | |
| for (i = 0; i < COUNT * 4; i++) { | |
| secp256k1_fe fe; | |
| testutil_random_fe_test(&fe); | |
| test_group_decompress(&fe); | |
| } | |
| } | |
| | |
| /***** ECMULT TESTS *****/ | |
| | |
| static void test_pre_g_table(const secp256k1_ge_storage * pre_g, size_t n) { | |
| /* Tests the pre_g / pre_g_128 tables for consistency. | |
| * For independent verification we take a "geometric" approach to verification. | |
| * We check that every entry is on-curve. | |
| * We check that for consecutive entries p and q, that p + gg - q = 0 by checking | |
| * (1) p, gg, and -q are colinear. | |
| * (2) p, gg, and -q are all distinct. | |
| * where gg is twice the generator, where the generator is the first table entry. | |
| * | |
| * Checking the table's generators are correct is done in run_ecmult_pre_g. | |
| */ | |
| secp256k1_gej g2; | |
| secp256k1_ge p, q, gg; | |
| secp256k1_fe dpx, dpy, dqx, dqy; | |
| size_t i; | |
| | |
| CHECK(0 < n); | |
| | |
| secp256k1_ge_from_storage(&p, &pre_g[0]); | |
| CHECK(secp256k1_ge_is_valid_var(&p)); | |
| | |
| secp256k1_gej_set_ge(&g2, &p); | |
| secp256k1_gej_double_var(&g2, &g2, NULL); | |
| secp256k1_ge_set_gej_var(&gg, &g2); | |
| for (i = 1; i < n; ++i) { | |
| secp256k1_fe_negate(&dpx, &p.x, 1); secp256k1_fe_add(&dpx, &gg.x); secp256k1_fe_normalize_weak(&dpx); | |
| secp256k1_fe_negate(&dpy, &p.y, 1); secp256k1_fe_add(&dpy, &gg.y); secp256k1_fe_normalize_weak(&dpy); | |
| /* Check that p is not equal to gg */ | |
| CHECK(!secp256k1_fe_normalizes_to_zero_var(&dpx) || !secp256k1_fe_normalizes_to_zero_var(&dpy)); | |
| | |
| secp256k1_ge_from_storage(&q, &pre_g[i]); | |
| CHECK(secp256k1_ge_is_valid_var(&q)); | |
| | |
| secp256k1_fe_negate(&dqx, &q.x, 1); secp256k1_fe_add(&dqx, &gg.x); | |
| dqy = q.y; secp256k1_fe_add(&dqy, &gg.y); | |
| /* Check that -q is not equal to gg */ | |
| CHECK(!secp256k1_fe_normalizes_to_zero_var(&dqx) || !secp256k1_fe_normalizes_to_zero_var(&dqy)); | |
| | |
| /* Check that -q is not equal to p */ | |
| CHECK(!secp256k1_fe_equal(&dpx, &dqx) || !secp256k1_fe_equal(&dpy, &dqy)); | |
| | |
| /* Check that p, -q and gg are colinear */ | |
| secp256k1_fe_mul(&dpx, &dpx, &dqy); | |
| secp256k1_fe_mul(&dpy, &dpy, &dqx); | |
| CHECK(secp256k1_fe_equal(&dpx, &dpy)); | |
| | |
| p = q; | |
| } | |
| } | |
| | |
| static void run_ecmult_pre_g(void) { | |
| secp256k1_ge_storage gs; | |
| secp256k1_gej gj; | |
| secp256k1_ge g; | |
| size_t i; | |
| | |
| /* Check that the pre_g and pre_g_128 tables are consistent. */ | |
| test_pre_g_table(secp256k1_pre_g, ECMULT_TABLE_SIZE(WINDOW_G)); | |
| test_pre_g_table(secp256k1_pre_g_128, ECMULT_TABLE_SIZE(WINDOW_G)); | |
| | |
| /* Check the first entry from the pre_g table. */ | |
| secp256k1_ge_to_storage(&gs, &secp256k1_ge_const_g); | |
| CHECK(secp256k1_memcmp_var(&gs, &secp256k1_pre_g[0], sizeof(gs)) == 0); | |
| | |
| /* Check the first entry from the pre_g_128 table. */ | |
| secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); | |
| for (i = 0; i < 128; ++i) { | |
| secp256k1_gej_double_var(&gj, &gj, NULL); | |
| } | |
| secp256k1_ge_set_gej(&g, &gj); | |
| secp256k1_ge_to_storage(&gs, &g); | |
| CHECK(secp256k1_memcmp_var(&gs, &secp256k1_pre_g_128[0], sizeof(gs)) == 0); | |
| } | |
| | |
| static void run_ecmult_chain(void) { | |
| /* random starting point A (on the curve) */ | |
| secp256k1_gej a = SECP256K1_GEJ_CONST( | |
| 0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3, | |
| 0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004, | |
| 0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f, | |
| 0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f | |
| ); | |
| /* two random initial factors xn and gn */ | |
| secp256k1_scalar xn = SECP256K1_SCALAR_CONST( | |
| 0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c, | |
| 0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407 | |
| ); | |
| secp256k1_scalar gn = SECP256K1_SCALAR_CONST( | |
| 0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9, | |
| 0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de | |
| ); | |
| /* two small multipliers to be applied to xn and gn in every iteration: */ | |
| static const secp256k1_scalar xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337); | |
| static const secp256k1_scalar gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113); | |
| /* accumulators with the resulting coefficients to A and G */ | |
| secp256k1_scalar ae = secp256k1_scalar_one; | |
| secp256k1_scalar ge = secp256k1_scalar_zero; | |
| /* actual points */ | |
| secp256k1_gej x; | |
| secp256k1_gej x2; | |
| int i; | |
| | |
| /* the point being computed */ | |
| x = a; | |
| for (i = 0; i < 200*COUNT; i++) { | |
| /* in each iteration, compute X = xn*X + gn*G; */ | |
| secp256k1_ecmult(&x, &x, &xn, &gn); | |
| /* also compute ae and ge: the actual accumulated factors for A and G */ | |
| /* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */ | |
| secp256k1_scalar_mul(&ae, &ae, &xn); | |
| secp256k1_scalar_mul(&ge, &ge, &xn); | |
| secp256k1_scalar_add(&ge, &ge, &gn); | |
| /* modify xn and gn */ | |
| secp256k1_scalar_mul(&xn, &xn, &xf); | |
| secp256k1_scalar_mul(&gn, &gn, &gf); | |
| | |
| /* verify */ | |
| if (i == 19999) { | |
| /* expected result after 19999 iterations */ | |
| secp256k1_gej rp = SECP256K1_GEJ_CONST( | |
| 0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE, | |
| 0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830, | |
| 0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D, | |
| 0x3B4F566A, 0xE6580454, 0x07ED6015, 0xEE1B2A88 | |
| ); | |
| CHECK(secp256k1_gej_eq_var(&rp, &x)); | |
| } | |
| } | |
| /* redo the computation, but directly with the resulting ae and ge coefficients: */ | |
| secp256k1_ecmult(&x2, &a, &ae, &ge); | |
| CHECK(secp256k1_gej_eq_var(&x, &x2)); | |
| } | |
| | |
| static void test_point_times_order(const secp256k1_gej *point) { | |
| /* X * (point + G) + (order-X) * (pointer + G) = 0 */ | |
| secp256k1_scalar x; | |
| secp256k1_scalar nx; | |
| secp256k1_gej res1, res2; | |
| secp256k1_ge res3; | |
| unsigned char pub[65]; | |
| size_t psize = 65; | |
| testutil_random_scalar_order_test(&x); | |
| secp256k1_scalar_negate(&nx, &x); | |
| secp256k1_ecmult(&res1, point, &x, &x); /* calc res1 = x * point + x * G; */ | |
| secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */ | |
| secp256k1_gej_add_var(&res1, &res1, &res2, NULL); | |
| CHECK(secp256k1_gej_is_infinity(&res1)); | |
| secp256k1_ge_set_gej(&res3, &res1); | |
| CHECK(secp256k1_ge_is_infinity(&res3)); | |
| CHECK(secp256k1_ge_is_valid_var(&res3) == 0); | |
| CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0); | |
| psize = 65; | |
| CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0); | |
| /* check zero/one edge cases */ | |
| secp256k1_ecmult(&res1, point, &secp256k1_scalar_zero, &secp256k1_scalar_zero); | |
| secp256k1_ge_set_gej(&res3, &res1); | |
| CHECK(secp256k1_ge_is_infinity(&res3)); | |
| secp256k1_ecmult(&res1, point, &secp256k1_scalar_one, &secp256k1_scalar_zero); | |
| secp256k1_ge_set_gej(&res3, &res1); | |
| CHECK(secp256k1_gej_eq_ge_var(point, &res3)); | |
| secp256k1_ecmult(&res1, point, &secp256k1_scalar_zero, &secp256k1_scalar_one); | |
| secp256k1_ge_set_gej(&res3, &res1); | |
| CHECK(secp256k1_ge_eq_var(&secp256k1_ge_const_g, &res3)); | |
| } | |
| | |
| /* These scalars reach large (in absolute value) outputs when fed to secp256k1_scalar_split_lambda. | |
| * | |
| * They are computed as: | |
| * - For a in [-2, -1, 0, 1, 2]: | |
| * - For b in [-3, -1, 1, 3]: | |
| * - Output (a*LAMBDA + (ORDER+b)/2) % ORDER | |
| */ | |
| static const secp256k1_scalar scalars_near_split_bounds[20] = { | |
| SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fc), | |
| SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fd), | |
| SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fe), | |
| SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6ff), | |
| SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632d), | |
| SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632e), | |
| SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632f), | |
| SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf76330), | |
| SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b209f), | |
| SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a0), | |
| SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a1), | |
| SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a2), | |
| SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede11), | |
| SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede12), | |
| SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede13), | |
| SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede14), | |
| SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a42), | |
| SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a43), | |
| SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a44), | |
| SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a45) | |
| }; | |
| | |
| static void test_ecmult_target(const secp256k1_scalar* target, int mode) { | |
| /* Mode: 0=ecmult_gen, 1=ecmult, 2=ecmult_const */ | |
| secp256k1_scalar n1, n2; | |
| secp256k1_ge p; | |
| secp256k1_gej pj, p1j, p2j, ptj; | |
| | |
| /* Generate random n1,n2 such that n1+n2 = -target. */ | |
| testutil_random_scalar_order_test(&n1); | |
| secp256k1_scalar_add(&n2, &n1, target); | |
| secp256k1_scalar_negate(&n2, &n2); | |
| | |
| /* Generate a random input point. */ | |
| if (mode != 0) { | |
| testutil_random_ge_test(&p); | |
| secp256k1_gej_set_ge(&pj, &p); | |
| } | |
| | |
| /* EC multiplications */ | |
| if (mode == 0) { | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &p1j, &n1); | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &p2j, &n2); | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &ptj, target); | |
| } else if (mode == 1) { | |
| secp256k1_ecmult(&p1j, &pj, &n1, &secp256k1_scalar_zero); | |
| secp256k1_ecmult(&p2j, &pj, &n2, &secp256k1_scalar_zero); | |
| secp256k1_ecmult(&ptj, &pj, target, &secp256k1_scalar_zero); | |
| } else { | |
| secp256k1_ecmult_const(&p1j, &p, &n1); | |
| secp256k1_ecmult_const(&p2j, &p, &n2); | |
| secp256k1_ecmult_const(&ptj, &p, target); | |
| } | |
| | |
| /* Add them all up: n1*P + n2*P + target*P = (n1+n2+target)*P = (n1+n1-n1-n2)*P = 0. */ | |
| secp256k1_gej_add_var(&ptj, &ptj, &p1j, NULL); | |
| secp256k1_gej_add_var(&ptj, &ptj, &p2j, NULL); | |
| CHECK(secp256k1_gej_is_infinity(&ptj)); | |
| } | |
| | |
| static void run_ecmult_near_split_bound(void) { | |
| int i; | |
| unsigned j; | |
| for (i = 0; i < 4*COUNT; ++i) { | |
| for (j = 0; j < sizeof(scalars_near_split_bounds) / sizeof(scalars_near_split_bounds[0]); ++j) { | |
| test_ecmult_target(&scalars_near_split_bounds[j], 0); | |
| test_ecmult_target(&scalars_near_split_bounds[j], 1); | |
| test_ecmult_target(&scalars_near_split_bounds[j], 2); | |
| } | |
| } | |
| } | |
| | |
| static void run_point_times_order(void) { | |
| int i; | |
| secp256k1_fe x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2); | |
| static const secp256k1_fe xr = SECP256K1_FE_CONST( | |
| 0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C, | |
| 0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45 | |
| ); | |
| for (i = 0; i < 500; i++) { | |
| secp256k1_ge p; | |
| if (secp256k1_ge_set_xo_var(&p, &x, 1)) { | |
| secp256k1_gej j; | |
| CHECK(secp256k1_ge_is_valid_var(&p)); | |
| secp256k1_gej_set_ge(&j, &p); | |
| test_point_times_order(&j); | |
| } | |
| secp256k1_fe_sqr(&x, &x); | |
| } | |
| secp256k1_fe_normalize_var(&x); | |
| CHECK(secp256k1_fe_equal(&x, &xr)); | |
| } | |
| | |
| static void ecmult_const_random_mult(void) { | |
| /* random starting point A (on the curve) */ | |
| secp256k1_ge a = SECP256K1_GE_CONST( | |
| 0x6d986544, 0x57ff52b8, 0xcf1b8126, 0x5b802a5b, | |
| 0xa97f9263, 0xb1e88044, 0x93351325, 0x91bc450a, | |
| 0x535c59f7, 0x325e5d2b, 0xc391fbe8, 0x3c12787c, | |
| 0x337e4a98, 0xe82a9011, 0x0123ba37, 0xdd769c7d | |
| ); | |
| /* random initial factor xn */ | |
| secp256k1_scalar xn = SECP256K1_SCALAR_CONST( | |
| 0x649d4f77, 0xc4242df7, 0x7f2079c9, 0x14530327, | |
| 0xa31b876a, 0xd2d8ce2a, 0x2236d5c6, 0xd7b2029b | |
| ); | |
| /* expected xn * A (from sage) */ | |
| secp256k1_ge expected_b = SECP256K1_GE_CONST( | |
| 0x23773684, 0x4d209dc7, 0x098a786f, 0x20d06fcd, | |
| 0x070a38bf, 0xc11ac651, 0x03004319, 0x1e2a8786, | |
| 0xed8c3b8e, 0xc06dd57b, 0xd06ea66e, 0x45492b0f, | |
| 0xb84e4e1b, 0xfb77e21f, 0x96baae2a, 0x63dec956 | |
| ); | |
| secp256k1_gej b; | |
| secp256k1_ecmult_const(&b, &a, &xn); | |
| | |
| CHECK(secp256k1_ge_is_valid_var(&a)); | |
| CHECK(secp256k1_gej_eq_ge_var(&b, &expected_b)); | |
| } | |
| | |
| static void ecmult_const_commutativity(void) { | |
| secp256k1_scalar a; | |
| secp256k1_scalar b; | |
| secp256k1_gej res1; | |
| secp256k1_gej res2; | |
| secp256k1_ge mid1; | |
| secp256k1_ge mid2; | |
| testutil_random_scalar_order_test(&a); | |
| testutil_random_scalar_order_test(&b); | |
| | |
| secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a); | |
| secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b); | |
| secp256k1_ge_set_gej(&mid1, &res1); | |
| secp256k1_ge_set_gej(&mid2, &res2); | |
| secp256k1_ecmult_const(&res1, &mid1, &b); | |
| secp256k1_ecmult_const(&res2, &mid2, &a); | |
| secp256k1_ge_set_gej(&mid1, &res1); | |
| secp256k1_ge_set_gej(&mid2, &res2); | |
| CHECK(secp256k1_ge_eq_var(&mid1, &mid2)); | |
| } | |
| | |
| static void ecmult_const_mult_zero_one(void) { | |
| secp256k1_scalar s; | |
| secp256k1_scalar negone; | |
| secp256k1_gej res1; | |
| secp256k1_ge res2; | |
| secp256k1_ge point; | |
| secp256k1_ge inf; | |
| | |
| testutil_random_scalar_order_test(&s); | |
| secp256k1_scalar_negate(&negone, &secp256k1_scalar_one); | |
| testutil_random_ge_test(&point); | |
| secp256k1_ge_set_infinity(&inf); | |
| | |
| /* 0*point */ | |
| secp256k1_ecmult_const(&res1, &point, &secp256k1_scalar_zero); | |
| CHECK(secp256k1_gej_is_infinity(&res1)); | |
| | |
| /* s*inf */ | |
| secp256k1_ecmult_const(&res1, &inf, &s); | |
| CHECK(secp256k1_gej_is_infinity(&res1)); | |
| | |
| /* 1*point */ | |
| secp256k1_ecmult_const(&res1, &point, &secp256k1_scalar_one); | |
| secp256k1_ge_set_gej(&res2, &res1); | |
| CHECK(secp256k1_ge_eq_var(&res2, &point)); | |
| | |
| /* -1*point */ | |
| secp256k1_ecmult_const(&res1, &point, &negone); | |
| secp256k1_gej_neg(&res1, &res1); | |
| secp256k1_ge_set_gej(&res2, &res1); | |
| CHECK(secp256k1_ge_eq_var(&res2, &point)); | |
| } | |
| | |
| static void ecmult_const_check_result(const secp256k1_ge *A, const secp256k1_scalar* q, const secp256k1_gej *res) { | |
| secp256k1_gej pointj, res2j; | |
| secp256k1_ge res2; | |
| secp256k1_gej_set_ge(&pointj, A); | |
| secp256k1_ecmult(&res2j, &pointj, q, &secp256k1_scalar_zero); | |
| secp256k1_ge_set_gej(&res2, &res2j); | |
| CHECK(secp256k1_gej_eq_ge_var(res, &res2)); | |
| } | |
| | |
| static void ecmult_const_edges(void) { | |
| secp256k1_scalar q; | |
| secp256k1_ge point; | |
| secp256k1_gej res; | |
| size_t i; | |
| size_t cases = 1 + sizeof(scalars_near_split_bounds) / sizeof(scalars_near_split_bounds[0]); | |
| | |
| /* We are trying to reach the following edge cases (variables are defined as | |
| * in ecmult_const_impl.h): | |
| * 1. i = 0: s = 0 <=> q = -K | |
| * 2. i > 0: v1, v2 large values | |
| * <=> s1, s2 large values | |
| * <=> s = scalars_near_split_bounds[i] | |
| * <=> q = 2*scalars_near_split_bounds[i] - K | |
| */ | |
| for (i = 0; i < cases; ++i) { | |
| secp256k1_scalar_negate(&q, &secp256k1_ecmult_const_K); | |
| if (i > 0) { | |
| secp256k1_scalar_add(&q, &q, &scalars_near_split_bounds[i - 1]); | |
| secp256k1_scalar_add(&q, &q, &scalars_near_split_bounds[i - 1]); | |
| } | |
| testutil_random_ge_test(&point); | |
| secp256k1_ecmult_const(&res, &point, &q); | |
| ecmult_const_check_result(&point, &q, &res); | |
| } | |
| } | |
| | |
| static void ecmult_const_mult_xonly(void) { | |
| int i; | |
| | |
| /* Test correspondence between secp256k1_ecmult_const and secp256k1_ecmult_const_xonly. */ | |
| for (i = 0; i < 2*COUNT; ++i) { | |
| secp256k1_ge base; | |
| secp256k1_gej basej, resj; | |
| secp256k1_fe n, d, resx, v; | |
| secp256k1_scalar q; | |
| int res; | |
| /* Random base point. */ | |
| testutil_random_ge_test(&base); | |
| /* Random scalar to multiply it with. */ | |
| testutil_random_scalar_order_test(&q); | |
| /* If i is odd, n=d*base.x for random non-zero d */ | |
| if (i & 1) { | |
| testutil_random_fe_non_zero_test(&d); | |
| secp256k1_fe_mul(&n, &base.x, &d); | |
| } else { | |
| n = base.x; | |
| } | |
| /* Perform x-only multiplication. */ | |
| res = secp256k1_ecmult_const_xonly(&resx, &n, (i & 1) ? &d : NULL, &q, i & 2); | |
| CHECK(res); | |
| /* Perform normal multiplication. */ | |
| secp256k1_gej_set_ge(&basej, &base); | |
| secp256k1_ecmult(&resj, &basej, &q, NULL); | |
| /* Check that resj's X coordinate corresponds with resx. */ | |
| secp256k1_fe_sqr(&v, &resj.z); | |
| secp256k1_fe_mul(&v, &v, &resx); | |
| CHECK(fe_equal(&v, &resj.x)); | |
| } | |
| | |
| /* Test that secp256k1_ecmult_const_xonly correctly rejects X coordinates not on curve. */ | |
| for (i = 0; i < 2*COUNT; ++i) { | |
| secp256k1_fe x, n, d, r; | |
| int res; | |
| secp256k1_scalar q; | |
| testutil_random_scalar_order_test(&q); | |
| /* Generate random X coordinate not on the curve. */ | |
| do { | |
| testutil_random_fe_test(&x); | |
| } while (secp256k1_ge_x_on_curve_var(&x)); | |
| /* If i is odd, n=d*x for random non-zero d. */ | |
| if (i & 1) { | |
| testutil_random_fe_non_zero_test(&d); | |
| secp256k1_fe_mul(&n, &x, &d); | |
| } else { | |
| n = x; | |
| } | |
| res = secp256k1_ecmult_const_xonly(&r, &n, (i & 1) ? &d : NULL, &q, 0); | |
| CHECK(res == 0); | |
| } | |
| } | |
| | |
| static void ecmult_const_chain_multiply(void) { | |
| /* Check known result (randomly generated test problem from sage) */ | |
| const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST( | |
| 0x4968d524, 0x2abf9b7a, 0x466abbcf, 0x34b11b6d, | |
| 0xcd83d307, 0x827bed62, 0x05fad0ce, 0x18fae63b | |
| ); | |
| const secp256k1_gej expected_point = SECP256K1_GEJ_CONST( | |
| 0x5494c15d, 0x32099706, 0xc2395f94, 0x348745fd, | |
| 0x757ce30e, 0x4e8c90fb, 0xa2bad184, 0xf883c69f, | |
| 0x5d195d20, 0xe191bf7f, 0x1be3e55f, 0x56a80196, | |
| 0x6071ad01, 0xf1462f66, 0xc997fa94, 0xdb858435 | |
| ); | |
| secp256k1_gej point; | |
| secp256k1_ge res; | |
| int i; | |
| | |
| secp256k1_gej_set_ge(&point, &secp256k1_ge_const_g); | |
| for (i = 0; i < 100; ++i) { | |
| secp256k1_ge tmp; | |
| secp256k1_ge_set_gej(&tmp, &point); | |
| secp256k1_ecmult_const(&point, &tmp, &scalar); | |
| } | |
| secp256k1_ge_set_gej(&res, &point); | |
| CHECK(secp256k1_gej_eq_ge_var(&expected_point, &res)); | |
| } | |
| | |
| static void run_ecmult_const_tests(void) { | |
| ecmult_const_mult_zero_one(); | |
| ecmult_const_edges(); | |
| ecmult_const_random_mult(); | |
| ecmult_const_commutativity(); | |
| ecmult_const_chain_multiply(); | |
| ecmult_const_mult_xonly(); | |
| } | |
| | |
| typedef struct { | |
| secp256k1_scalar *sc; | |
| secp256k1_ge *pt; | |
| } ecmult_multi_data; | |
| | |
| static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) { | |
| ecmult_multi_data *data = (ecmult_multi_data*) cbdata; | |
| *sc = data->sc[idx]; | |
| *pt = data->pt[idx]; | |
| return 1; | |
| } | |
| | |
| static int ecmult_multi_false_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) { | |
| (void)sc; | |
| (void)pt; | |
| (void)idx; | |
| (void)cbdata; | |
| return 0; | |
| } | |
| | |
| static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func ecmult_multi) { | |
| int ncount; | |
| secp256k1_scalar sc[32]; | |
| secp256k1_ge pt[32]; | |
| secp256k1_gej r; | |
| secp256k1_gej r2; | |
| ecmult_multi_data data; | |
| | |
| data.sc = sc; | |
| data.pt = pt; | |
| | |
| /* No points to multiply */ | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, NULL, ecmult_multi_callback, &data, 0)); | |
| | |
| /* Check 1- and 2-point multiplies against ecmult */ | |
| for (ncount = 0; ncount < COUNT; ncount++) { | |
| secp256k1_ge ptg; | |
| secp256k1_gej ptgj; | |
| testutil_random_scalar_order(&sc[0]); | |
| testutil_random_scalar_order(&sc[1]); | |
| | |
| testutil_random_ge_test(&ptg); | |
| secp256k1_gej_set_ge(&ptgj, &ptg); | |
| pt[0] = ptg; | |
| pt[1] = secp256k1_ge_const_g; | |
| | |
| /* only G scalar */ | |
| secp256k1_ecmult(&r2, &ptgj, &secp256k1_scalar_zero, &sc[0]); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0)); | |
| CHECK(secp256k1_gej_eq_var(&r, &r2)); | |
| | |
| /* 1-point */ | |
| secp256k1_ecmult(&r2, &ptgj, &sc[0], &secp256k1_scalar_zero); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 1)); | |
| CHECK(secp256k1_gej_eq_var(&r, &r2)); | |
| | |
| /* Try to multiply 1 point, but callback returns false */ | |
| CHECK(!ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_false_callback, &data, 1)); | |
| | |
| /* 2-point */ | |
| secp256k1_ecmult(&r2, &ptgj, &sc[0], &sc[1]); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 2)); | |
| CHECK(secp256k1_gej_eq_var(&r, &r2)); | |
| | |
| /* 2-point with G scalar */ | |
| secp256k1_ecmult(&r2, &ptgj, &sc[0], &sc[1]); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &sc[1], ecmult_multi_callback, &data, 1)); | |
| CHECK(secp256k1_gej_eq_var(&r, &r2)); | |
| } | |
| | |
| /* Check infinite outputs of various forms */ | |
| for (ncount = 0; ncount < COUNT; ncount++) { | |
| secp256k1_ge ptg; | |
| size_t i, j; | |
| size_t sizes[] = { 2, 10, 32 }; | |
| | |
| for (j = 0; j < 3; j++) { | |
| for (i = 0; i < 32; i++) { | |
| testutil_random_scalar_order(&sc[i]); | |
| secp256k1_ge_set_infinity(&pt[i]); | |
| } | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, sizes[j])); | |
| CHECK(secp256k1_gej_is_infinity(&r)); | |
| } | |
| | |
| for (j = 0; j < 3; j++) { | |
| for (i = 0; i < 32; i++) { | |
| testutil_random_ge_test(&ptg); | |
| pt[i] = ptg; | |
| secp256k1_scalar_set_int(&sc[i], 0); | |
| } | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, sizes[j])); | |
| CHECK(secp256k1_gej_is_infinity(&r)); | |
| } | |
| | |
| for (j = 0; j < 3; j++) { | |
| testutil_random_ge_test(&ptg); | |
| for (i = 0; i < 16; i++) { | |
| testutil_random_scalar_order(&sc[2*i]); | |
| secp256k1_scalar_negate(&sc[2*i + 1], &sc[2*i]); | |
| pt[2 * i] = ptg; | |
| pt[2 * i + 1] = ptg; | |
| } | |
| | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, sizes[j])); | |
| CHECK(secp256k1_gej_is_infinity(&r)); | |
| | |
| testutil_random_scalar_order(&sc[0]); | |
| for (i = 0; i < 16; i++) { | |
| testutil_random_ge_test(&ptg); | |
| | |
| sc[2*i] = sc[0]; | |
| sc[2*i+1] = sc[0]; | |
| pt[2 * i] = ptg; | |
| secp256k1_ge_neg(&pt[2*i+1], &pt[2*i]); | |
| } | |
| | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, sizes[j])); | |
| CHECK(secp256k1_gej_is_infinity(&r)); | |
| } | |
| | |
| testutil_random_ge_test(&ptg); | |
| secp256k1_scalar_set_int(&sc[0], 0); | |
| pt[0] = ptg; | |
| for (i = 1; i < 32; i++) { | |
| pt[i] = ptg; | |
| | |
| testutil_random_scalar_order(&sc[i]); | |
| secp256k1_scalar_add(&sc[0], &sc[0], &sc[i]); | |
| secp256k1_scalar_negate(&sc[i], &sc[i]); | |
| } | |
| | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 32)); | |
| CHECK(secp256k1_gej_is_infinity(&r)); | |
| } | |
| | |
| /* Check random points, constant scalar */ | |
| for (ncount = 0; ncount < COUNT; ncount++) { | |
| size_t i; | |
| secp256k1_gej_set_infinity(&r); | |
| | |
| testutil_random_scalar_order(&sc[0]); | |
| for (i = 0; i < 20; i++) { | |
| secp256k1_ge ptg; | |
| sc[i] = sc[0]; | |
| testutil_random_ge_test(&ptg); | |
| pt[i] = ptg; | |
| secp256k1_gej_add_ge_var(&r, &r, &pt[i], NULL); | |
| } | |
| | |
| secp256k1_ecmult(&r2, &r, &sc[0], &secp256k1_scalar_zero); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 20)); | |
| CHECK(secp256k1_gej_eq_var(&r, &r2)); | |
| } | |
| | |
| /* Check random scalars, constant point */ | |
| for (ncount = 0; ncount < COUNT; ncount++) { | |
| size_t i; | |
| secp256k1_ge ptg; | |
| secp256k1_gej p0j; | |
| secp256k1_scalar rs; | |
| secp256k1_scalar_set_int(&rs, 0); | |
| | |
| testutil_random_ge_test(&ptg); | |
| for (i = 0; i < 20; i++) { | |
| testutil_random_scalar_order(&sc[i]); | |
| pt[i] = ptg; | |
| secp256k1_scalar_add(&rs, &rs, &sc[i]); | |
| } | |
| | |
| secp256k1_gej_set_ge(&p0j, &pt[0]); | |
| secp256k1_ecmult(&r2, &p0j, &rs, &secp256k1_scalar_zero); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 20)); | |
| CHECK(secp256k1_gej_eq_var(&r, &r2)); | |
| } | |
| | |
| /* Sanity check that zero scalars don't cause problems */ | |
| for (ncount = 0; ncount < 20; ncount++) { | |
| testutil_random_scalar_order(&sc[ncount]); | |
| testutil_random_ge_test(&pt[ncount]); | |
| } | |
| | |
| secp256k1_scalar_set_int(&sc[0], 0); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 20)); | |
| secp256k1_scalar_set_int(&sc[1], 0); | |
| secp256k1_scalar_set_int(&sc[2], 0); | |
| secp256k1_scalar_set_int(&sc[3], 0); | |
| secp256k1_scalar_set_int(&sc[4], 0); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 6)); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 5)); | |
| CHECK(secp256k1_gej_is_infinity(&r)); | |
| | |
| /* Run through s0*(t0*P) + s1*(t1*P) exhaustively for many small values of s0, s1, t0, t1 */ | |
| { | |
| const size_t TOP = 8; | |
| size_t s0i, s1i; | |
| size_t t0i, t1i; | |
| secp256k1_ge ptg; | |
| secp256k1_gej ptgj; | |
| | |
| testutil_random_ge_test(&ptg); | |
| secp256k1_gej_set_ge(&ptgj, &ptg); | |
| | |
| for(t0i = 0; t0i < TOP; t0i++) { | |
| for(t1i = 0; t1i < TOP; t1i++) { | |
| secp256k1_gej t0p, t1p; | |
| secp256k1_scalar t0, t1; | |
| | |
| secp256k1_scalar_set_int(&t0, (t0i + 1) / 2); | |
| secp256k1_scalar_cond_negate(&t0, t0i & 1); | |
| secp256k1_scalar_set_int(&t1, (t1i + 1) / 2); | |
| secp256k1_scalar_cond_negate(&t1, t1i & 1); | |
| | |
| secp256k1_ecmult(&t0p, &ptgj, &t0, &secp256k1_scalar_zero); | |
| secp256k1_ecmult(&t1p, &ptgj, &t1, &secp256k1_scalar_zero); | |
| | |
| for(s0i = 0; s0i < TOP; s0i++) { | |
| for(s1i = 0; s1i < TOP; s1i++) { | |
| secp256k1_scalar tmp1, tmp2; | |
| secp256k1_gej expected, actual; | |
| | |
| secp256k1_ge_set_gej(&pt[0], &t0p); | |
| secp256k1_ge_set_gej(&pt[1], &t1p); | |
| | |
| secp256k1_scalar_set_int(&sc[0], (s0i + 1) / 2); | |
| secp256k1_scalar_cond_negate(&sc[0], s0i & 1); | |
| secp256k1_scalar_set_int(&sc[1], (s1i + 1) / 2); | |
| secp256k1_scalar_cond_negate(&sc[1], s1i & 1); | |
| | |
| secp256k1_scalar_mul(&tmp1, &t0, &sc[0]); | |
| secp256k1_scalar_mul(&tmp2, &t1, &sc[1]); | |
| secp256k1_scalar_add(&tmp1, &tmp1, &tmp2); | |
| | |
| secp256k1_ecmult(&expected, &ptgj, &tmp1, &secp256k1_scalar_zero); | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &actual, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 2)); | |
| CHECK(secp256k1_gej_eq_var(&actual, &expected)); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| } | |
| | |
| static int test_ecmult_multi_random(secp256k1_scratch *scratch) { | |
| /* Large random test for ecmult_multi_* functions which exercises: | |
| * - Few or many inputs (0 up to 128, roughly exponentially distributed). | |
| * - Few or many 0*P or a*INF inputs (roughly uniformly distributed). | |
| * - Including or excluding an nonzero a*G term (or such a term at all). | |
| * - Final expected result equal to infinity or not (roughly 50%). | |
| * - ecmult_multi_var, ecmult_strauss_single_batch, ecmult_pippenger_single_batch | |
| */ | |
| | |
| /* These 4 variables define the eventual input to the ecmult_multi function. | |
| * g_scalar is the G scalar fed to it (or NULL, possibly, if g_scalar=0), and | |
| * scalars[0..filled-1] and gejs[0..filled-1] are the scalars and points | |
| * which form its normal inputs. */ | |
| int filled = 0; | |
| secp256k1_scalar g_scalar = secp256k1_scalar_zero; | |
| secp256k1_scalar scalars[128]; | |
| secp256k1_gej gejs[128]; | |
| /* The expected result, and the computed result. */ | |
| secp256k1_gej expected, computed; | |
| /* Temporaries. */ | |
| secp256k1_scalar sc_tmp; | |
| secp256k1_ge ge_tmp; | |
| /* Variables needed for the actual input to ecmult_multi. */ | |
| secp256k1_ge ges[128]; | |
| ecmult_multi_data data; | |
| | |
| int i; | |
| /* Which multiplication function to use */ | |
| int fn = testrand_int(3); | |
| secp256k1_ecmult_multi_func ecmult_multi = fn == 0 ? secp256k1_ecmult_multi_var : | |
| fn == 1 ? secp256k1_ecmult_strauss_batch_single : | |
| secp256k1_ecmult_pippenger_batch_single; | |
| /* Simulate exponentially distributed num. */ | |
| int num_bits = 2 + testrand_int(6); | |
| /* Number of (scalar, point) inputs (excluding g). */ | |
| int num = testrand_int((1 << num_bits) + 1); | |
| /* Number of those which are nonzero. */ | |
| int num_nonzero = testrand_int(num + 1); | |
| /* Whether we're aiming to create an input with nonzero expected result. */ | |
| int nonzero_result = testrand_bits(1); | |
| /* Whether we will provide nonzero g multiplicand. In some cases our hand | |
| * is forced here based on num_nonzero and nonzero_result. */ | |
| int g_nonzero = num_nonzero == 0 ? nonzero_result : | |
| num_nonzero == 1 && !nonzero_result ? 1 : | |
| (int)testrand_bits(1); | |
| /* Which g_scalar pointer to pass into ecmult_multi(). */ | |
| const secp256k1_scalar* g_scalar_ptr = (g_nonzero || testrand_bits(1)) ? &g_scalar : NULL; | |
| /* How many EC multiplications were performed in this function. */ | |
| int mults = 0; | |
| /* How many randomization steps to apply to the input list. */ | |
| int rands = (int)testrand_bits(3); | |
| if (rands > num_nonzero) rands = num_nonzero; | |
| | |
| secp256k1_gej_set_infinity(&expected); | |
| secp256k1_gej_set_infinity(&gejs[0]); | |
| secp256k1_scalar_set_int(&scalars[0], 0); | |
| | |
| if (g_nonzero) { | |
| /* If g_nonzero, set g_scalar to nonzero value r. */ | |
| testutil_random_scalar_order_test(&g_scalar); | |
| if (!nonzero_result) { | |
| /* If expected=0 is desired, add a (a*r, -(1/a)*g) term to compensate. */ | |
| CHECK(num_nonzero > filled); | |
| testutil_random_scalar_order_test(&sc_tmp); | |
| secp256k1_scalar_mul(&scalars[filled], &sc_tmp, &g_scalar); | |
| secp256k1_scalar_inverse_var(&sc_tmp, &sc_tmp); | |
| secp256k1_scalar_negate(&sc_tmp, &sc_tmp); | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &gejs[filled], &sc_tmp); | |
| ++filled; | |
| ++mults; | |
| } | |
| } | |
| | |
| if (nonzero_result && filled < num_nonzero) { | |
| /* If a nonzero result is desired, and there is space, add a random nonzero term. */ | |
| testutil_random_scalar_order_test(&scalars[filled]); | |
| testutil_random_ge_test(&ge_tmp); | |
| secp256k1_gej_set_ge(&gejs[filled], &ge_tmp); | |
| ++filled; | |
| } | |
| | |
| if (nonzero_result) { | |
| /* Compute the expected result using normal ecmult. */ | |
| CHECK(filled <= 1); | |
| secp256k1_ecmult(&expected, &gejs[0], &scalars[0], &g_scalar); | |
| mults += filled + g_nonzero; | |
| } | |
| | |
| /* At this point we have expected = scalar_g*G + sum(scalars[i]*gejs[i] for i=0..filled-1). */ | |
| CHECK(filled <= 1 + !nonzero_result); | |
| CHECK(filled <= num_nonzero); | |
| | |
| /* Add entries to scalars,gejs so that there are num of them. All the added entries | |
| * either have scalar=0 or point=infinity, so these do not change the expected result. */ | |
| while (filled < num) { | |
| if (testrand_bits(1)) { | |
| secp256k1_gej_set_infinity(&gejs[filled]); | |
| testutil_random_scalar_order_test(&scalars[filled]); | |
| } else { | |
| secp256k1_scalar_set_int(&scalars[filled], 0); | |
| testutil_random_ge_test(&ge_tmp); | |
| secp256k1_gej_set_ge(&gejs[filled], &ge_tmp); | |
| } | |
| ++filled; | |
| } | |
| | |
| /* Now perform cheapish transformations on gejs and scalars, for indices | |
| * 0..num_nonzero-1, which do not change the expected result, but may | |
| * convert some of them to be both non-0-scalar and non-infinity-point. */ | |
| for (i = 0; i < rands; ++i) { | |
| int j; | |
| secp256k1_scalar v, iv; | |
| /* Shuffle the entries. */ | |
| for (j = 0; j < num_nonzero; ++j) { | |
| int k = testrand_int(num_nonzero - j); | |
| if (k != 0) { | |
| secp256k1_gej gej = gejs[j]; | |
| secp256k1_scalar sc = scalars[j]; | |
| gejs[j] = gejs[j + k]; | |
| scalars[j] = scalars[j + k]; | |
| gejs[j + k] = gej; | |
| scalars[j + k] = sc; | |
| } | |
| } | |
| /* Perturb all consecutive pairs of inputs: | |
| * a*P + b*Q -> (a+b)*P + b*(Q-P). */ | |
| for (j = 0; j + 1 < num_nonzero; j += 2) { | |
| secp256k1_gej gej; | |
| secp256k1_scalar_add(&scalars[j], &scalars[j], &scalars[j+1]); | |
| secp256k1_gej_neg(&gej, &gejs[j]); | |
| secp256k1_gej_add_var(&gejs[j+1], &gejs[j+1], &gej, NULL); | |
| } | |
| /* Transform the last input: a*P -> (v*a) * ((1/v)*P). */ | |
| CHECK(num_nonzero >= 1); | |
| testutil_random_scalar_order_test(&v); | |
| secp256k1_scalar_inverse(&iv, &v); | |
| secp256k1_scalar_mul(&scalars[num_nonzero - 1], &scalars[num_nonzero - 1], &v); | |
| secp256k1_ecmult(&gejs[num_nonzero - 1], &gejs[num_nonzero - 1], &iv, NULL); | |
| ++mults; | |
| } | |
| | |
| /* Shuffle all entries (0..num-1). */ | |
| for (i = 0; i < num; ++i) { | |
| int j = testrand_int(num - i); | |
| if (j != 0) { | |
| secp256k1_gej gej = gejs[i]; | |
| secp256k1_scalar sc = scalars[i]; | |
| gejs[i] = gejs[i + j]; | |
| scalars[i] = scalars[i + j]; | |
| gejs[i + j] = gej; | |
| scalars[i + j] = sc; | |
| } | |
| } | |
| | |
| /* Compute affine versions of all inputs. */ | |
| secp256k1_ge_set_all_gej_var(ges, gejs, filled); | |
| /* Invoke ecmult_multi code. */ | |
| data.sc = scalars; | |
| data.pt = ges; | |
| CHECK(ecmult_multi(&CTX->error_callback, scratch, &computed, g_scalar_ptr, ecmult_multi_callback, &data, filled)); | |
| mults += num_nonzero + g_nonzero; | |
| /* Compare with expected result. */ | |
| CHECK(secp256k1_gej_eq_var(&computed, &expected)); | |
| return mults; | |
| } | |
| | |
| static void test_ecmult_multi_batch_single(secp256k1_ecmult_multi_func ecmult_multi) { | |
| secp256k1_scalar sc; | |
| secp256k1_ge pt; | |
| secp256k1_gej r; | |
| ecmult_multi_data data; | |
| secp256k1_scratch *scratch_empty; | |
| | |
| testutil_random_ge_test(&pt); | |
| testutil_random_scalar_order(&sc); | |
| data.sc = ≻ | |
| data.pt = &pt; | |
| | |
| /* Try to multiply 1 point, but scratch space is empty.*/ | |
| scratch_empty = secp256k1_scratch_create(&CTX->error_callback, 0); | |
| CHECK(!ecmult_multi(&CTX->error_callback, scratch_empty, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 1)); | |
| secp256k1_scratch_destroy(&CTX->error_callback, scratch_empty); | |
| } | |
| | |
| static void test_secp256k1_pippenger_bucket_window_inv(void) { | |
| int i; | |
| | |
| CHECK(secp256k1_pippenger_bucket_window_inv(0) == 0); | |
| for(i = 1; i <= PIPPENGER_MAX_BUCKET_WINDOW; i++) { | |
| /* Bucket_window of 8 is not used with endo */ | |
| if (i == 8) { | |
| continue; | |
| } | |
| CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)) == i); | |
| if (i != PIPPENGER_MAX_BUCKET_WINDOW) { | |
| CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)+1) > i); | |
| } | |
| } | |
| } | |
| | |
| /** | |
| * Probabilistically test the function returning the maximum number of possible points | |
| * for a given scratch space. | |
| */ | |
| static void test_ecmult_multi_pippenger_max_points(void) { | |
| size_t scratch_size = testrand_bits(8); | |
| size_t max_size = secp256k1_pippenger_scratch_size(secp256k1_pippenger_bucket_window_inv(PIPPENGER_MAX_BUCKET_WINDOW-1)+512, 12); | |
| secp256k1_scratch *scratch; | |
| size_t n_points_supported; | |
| int bucket_window = 0; | |
| | |
| for(; scratch_size < max_size; scratch_size+=256) { | |
| size_t i; | |
| size_t total_alloc; | |
| size_t checkpoint; | |
| scratch = secp256k1_scratch_create(&CTX->error_callback, scratch_size); | |
| CHECK(scratch != NULL); | |
| checkpoint = secp256k1_scratch_checkpoint(&CTX->error_callback, scratch); | |
| n_points_supported = secp256k1_pippenger_max_points(&CTX->error_callback, scratch); | |
| if (n_points_supported == 0) { | |
| secp256k1_scratch_destroy(&CTX->error_callback, scratch); | |
| continue; | |
| } | |
| bucket_window = secp256k1_pippenger_bucket_window(n_points_supported); | |
| /* allocate `total_alloc` bytes over `PIPPENGER_SCRATCH_OBJECTS` many allocations */ | |
| total_alloc = secp256k1_pippenger_scratch_size(n_points_supported, bucket_window); | |
| for (i = 0; i < PIPPENGER_SCRATCH_OBJECTS - 1; i++) { | |
| CHECK(secp256k1_scratch_alloc(&CTX->error_callback, scratch, 1)); | |
| total_alloc--; | |
| } | |
| CHECK(secp256k1_scratch_alloc(&CTX->error_callback, scratch, total_alloc)); | |
| secp256k1_scratch_apply_checkpoint(&CTX->error_callback, scratch, checkpoint); | |
| secp256k1_scratch_destroy(&CTX->error_callback, scratch); | |
| } | |
| CHECK(bucket_window == PIPPENGER_MAX_BUCKET_WINDOW); | |
| } | |
| | |
| static void test_ecmult_multi_batch_size_helper(void) { | |
| size_t n_batches, n_batch_points, max_n_batch_points, n; | |
| | |
| max_n_batch_points = 0; | |
| n = 1; | |
| CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 0); | |
| | |
| max_n_batch_points = 1; | |
| n = 0; | |
| CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); | |
| CHECK(n_batches == 0); | |
| CHECK(n_batch_points == 0); | |
| | |
| max_n_batch_points = 2; | |
| n = 5; | |
| CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); | |
| CHECK(n_batches == 3); | |
| CHECK(n_batch_points == 2); | |
| | |
| max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH; | |
| n = ECMULT_MAX_POINTS_PER_BATCH; | |
| CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); | |
| CHECK(n_batches == 1); | |
| CHECK(n_batch_points == ECMULT_MAX_POINTS_PER_BATCH); | |
| | |
| max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH + 1; | |
| n = ECMULT_MAX_POINTS_PER_BATCH + 1; | |
| CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); | |
| CHECK(n_batches == 2); | |
| CHECK(n_batch_points == ECMULT_MAX_POINTS_PER_BATCH/2 + 1); | |
| | |
| max_n_batch_points = 1; | |
| n = SIZE_MAX; | |
| CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); | |
| CHECK(n_batches == SIZE_MAX); | |
| CHECK(n_batch_points == 1); | |
| | |
| max_n_batch_points = 2; | |
| n = SIZE_MAX; | |
| CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); | |
| CHECK(n_batches == SIZE_MAX/2 + 1); | |
| CHECK(n_batch_points == 2); | |
| } | |
| | |
| /** | |
| * Run secp256k1_ecmult_multi_var with num points and a scratch space restricted to | |
| * 1 <= i <= num points. | |
| */ | |
| static void test_ecmult_multi_batching(void) { | |
| static const int n_points = 2*ECMULT_PIPPENGER_THRESHOLD; | |
| secp256k1_scalar scG; | |
| secp256k1_scalar *sc = (secp256k1_scalar *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_scalar) * n_points); | |
| secp256k1_ge *pt = (secp256k1_ge *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_ge) * n_points); | |
| secp256k1_gej r; | |
| secp256k1_gej r2; | |
| ecmult_multi_data data; | |
| int i; | |
| secp256k1_scratch *scratch; | |
| | |
| secp256k1_gej_set_infinity(&r2); | |
| | |
| /* Get random scalars and group elements and compute result */ | |
| testutil_random_scalar_order(&scG); | |
| secp256k1_ecmult(&r2, &r2, &secp256k1_scalar_zero, &scG); | |
| for(i = 0; i < n_points; i++) { | |
| secp256k1_ge ptg; | |
| secp256k1_gej ptgj; | |
| testutil_random_ge_test(&ptg); | |
| secp256k1_gej_set_ge(&ptgj, &ptg); | |
| pt[i] = ptg; | |
| testutil_random_scalar_order(&sc[i]); | |
| secp256k1_ecmult(&ptgj, &ptgj, &sc[i], NULL); | |
| secp256k1_gej_add_var(&r2, &r2, &ptgj, NULL); | |
| } | |
| data.sc = sc; | |
| data.pt = pt; | |
| secp256k1_gej_neg(&r2, &r2); | |
| | |
| /* Test with empty scratch space. It should compute the correct result using | |
| * ecmult_mult_simple algorithm which doesn't require a scratch space. */ | |
| scratch = secp256k1_scratch_create(&CTX->error_callback, 0); | |
| CHECK(secp256k1_ecmult_multi_var(&CTX->error_callback, scratch, &r, &scG, ecmult_multi_callback, &data, n_points)); | |
| secp256k1_gej_add_var(&r, &r, &r2, NULL); | |
| CHECK(secp256k1_gej_is_infinity(&r)); | |
| secp256k1_scratch_destroy(&CTX->error_callback, scratch); | |
| | |
| /* Test with space for 1 point in pippenger. That's not enough because | |
| * ecmult_multi selects strauss which requires more memory. It should | |
| * therefore select the simple algorithm. */ | |
| scratch = secp256k1_scratch_create(&CTX->error_callback, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT); | |
| CHECK(secp256k1_ecmult_multi_var(&CTX->error_callback, scratch, &r, &scG, ecmult_multi_callback, &data, n_points)); | |
| secp256k1_gej_add_var(&r, &r, &r2, NULL); | |
| CHECK(secp256k1_gej_is_infinity(&r)); | |
| secp256k1_scratch_destroy(&CTX->error_callback, scratch); | |
| | |
| for(i = 1; i <= n_points; i++) { | |
| if (i > ECMULT_PIPPENGER_THRESHOLD) { | |
| int bucket_window = secp256k1_pippenger_bucket_window(i); | |
| size_t scratch_size = secp256k1_pippenger_scratch_size(i, bucket_window); | |
| scratch = secp256k1_scratch_create(&CTX->error_callback, scratch_size + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT); | |
| } else { | |
| size_t scratch_size = secp256k1_strauss_scratch_size(i); | |
| scratch = secp256k1_scratch_create(&CTX->error_callback, scratch_size + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT); | |
| } | |
| CHECK(secp256k1_ecmult_multi_var(&CTX->error_callback, scratch, &r, &scG, ecmult_multi_callback, &data, n_points)); | |
| secp256k1_gej_add_var(&r, &r, &r2, NULL); | |
| CHECK(secp256k1_gej_is_infinity(&r)); | |
| secp256k1_scratch_destroy(&CTX->error_callback, scratch); | |
| } | |
| free(sc); | |
| free(pt); | |
| } | |
| | |
| static void run_ecmult_multi_tests(void) { | |
| secp256k1_scratch *scratch; | |
| int64_t todo = (int64_t)320 * COUNT; | |
| | |
| test_secp256k1_pippenger_bucket_window_inv(); | |
| test_ecmult_multi_pippenger_max_points(); | |
| scratch = secp256k1_scratch_create(&CTX->error_callback, 819200); | |
| test_ecmult_multi(scratch, secp256k1_ecmult_multi_var); | |
| test_ecmult_multi(NULL, secp256k1_ecmult_multi_var); | |
| test_ecmult_multi(scratch, secp256k1_ecmult_pippenger_batch_single); | |
| test_ecmult_multi_batch_single(secp256k1_ecmult_pippenger_batch_single); | |
| test_ecmult_multi(scratch, secp256k1_ecmult_strauss_batch_single); | |
| test_ecmult_multi_batch_single(secp256k1_ecmult_strauss_batch_single); | |
| while (todo > 0) { | |
| todo -= test_ecmult_multi_random(scratch); | |
| } | |
| secp256k1_scratch_destroy(&CTX->error_callback, scratch); | |
| | |
| /* Run test_ecmult_multi with space for exactly one point */ | |
| scratch = secp256k1_scratch_create(&CTX->error_callback, secp256k1_strauss_scratch_size(1) + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT); | |
| test_ecmult_multi(scratch, secp256k1_ecmult_multi_var); | |
| secp256k1_scratch_destroy(&CTX->error_callback, scratch); | |
| | |
| test_ecmult_multi_batch_size_helper(); | |
| test_ecmult_multi_batching(); | |
| } | |
| | |
| static void test_wnaf(const secp256k1_scalar *number, int w) { | |
| secp256k1_scalar x, two, t; | |
| int wnaf[256]; | |
| int zeroes = -1; | |
| int i; | |
| int bits; | |
| secp256k1_scalar_set_int(&x, 0); | |
| secp256k1_scalar_set_int(&two, 2); | |
| bits = secp256k1_ecmult_wnaf(wnaf, 256, number, w); | |
| CHECK(bits <= 256); | |
| for (i = bits-1; i >= 0; i--) { | |
| int v = wnaf[i]; | |
| secp256k1_scalar_mul(&x, &x, &two); | |
| if (v) { | |
| CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */ | |
| zeroes=0; | |
| CHECK((v & 1) == 1); /* check non-zero elements are odd */ | |
| CHECK(v <= (1 << (w-1)) - 1); /* check range below */ | |
| CHECK(v >= -(1 << (w-1)) - 1); /* check range above */ | |
| } else { | |
| CHECK(zeroes != -1); /* check that no unnecessary zero padding exists */ | |
| zeroes++; | |
| } | |
| if (v >= 0) { | |
| secp256k1_scalar_set_int(&t, v); | |
| } else { | |
| secp256k1_scalar_set_int(&t, -v); | |
| secp256k1_scalar_negate(&t, &t); | |
| } | |
| secp256k1_scalar_add(&x, &x, &t); | |
| } | |
| CHECK(secp256k1_scalar_eq(&x, number)); /* check that wnaf represents number */ | |
| } | |
| | |
| static void test_fixed_wnaf(const secp256k1_scalar *number, int w) { | |
| secp256k1_scalar x, shift; | |
| int wnaf[256] = {0}; | |
| int i; | |
| int skew; | |
| secp256k1_scalar num, unused; | |
| | |
| secp256k1_scalar_set_int(&x, 0); | |
| secp256k1_scalar_set_int(&shift, 1 << w); | |
| /* Make num a 128-bit scalar. */ | |
| secp256k1_scalar_split_128(&num, &unused, number); | |
| skew = secp256k1_wnaf_fixed(wnaf, &num, w); | |
| | |
| for (i = WNAF_SIZE(w)-1; i >= 0; --i) { | |
| secp256k1_scalar t; | |
| int v = wnaf[i]; | |
| CHECK(v == 0 || v & 1); /* check parity */ | |
| CHECK(v > -(1 << w)); /* check range above */ | |
| CHECK(v < (1 << w)); /* check range below */ | |
| | |
| secp256k1_scalar_mul(&x, &x, &shift); | |
| if (v >= 0) { | |
| secp256k1_scalar_set_int(&t, v); | |
| } else { | |
| secp256k1_scalar_set_int(&t, -v); | |
| secp256k1_scalar_negate(&t, &t); | |
| } | |
| secp256k1_scalar_add(&x, &x, &t); | |
| } | |
| /* If skew is 1 then add 1 to num */ | |
| secp256k1_scalar_cadd_bit(&num, 0, skew == 1); | |
| CHECK(secp256k1_scalar_eq(&x, &num)); | |
| } | |
| | |
| /* Checks that the first 8 elements of wnaf are equal to wnaf_expected and the | |
| * rest is 0.*/ | |
| static void test_fixed_wnaf_small_helper(int *wnaf, int *wnaf_expected, int w) { | |
| int i; | |
| for (i = WNAF_SIZE(w)-1; i >= 8; --i) { | |
| CHECK(wnaf[i] == 0); | |
| } | |
| for (i = 7; i >= 0; --i) { | |
| CHECK(wnaf[i] == wnaf_expected[i]); | |
| } | |
| } | |
| | |
| static void test_fixed_wnaf_small(void) { | |
| int w = 4; | |
| int wnaf[256] = {0}; | |
| int i; | |
| int skew; | |
| secp256k1_scalar num; | |
| | |
| secp256k1_scalar_set_int(&num, 0); | |
| skew = secp256k1_wnaf_fixed(wnaf, &num, w); | |
| for (i = WNAF_SIZE(w)-1; i >= 0; --i) { | |
| int v = wnaf[i]; | |
| CHECK(v == 0); | |
| } | |
| CHECK(skew == 0); | |
| | |
| secp256k1_scalar_set_int(&num, 1); | |
| skew = secp256k1_wnaf_fixed(wnaf, &num, w); | |
| for (i = WNAF_SIZE(w)-1; i >= 1; --i) { | |
| int v = wnaf[i]; | |
| CHECK(v == 0); | |
| } | |
| CHECK(wnaf[0] == 1); | |
| CHECK(skew == 0); | |
| | |
| { | |
| int wnaf_expected[8] = { 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf }; | |
| secp256k1_scalar_set_int(&num, 0xffffffff); | |
| skew = secp256k1_wnaf_fixed(wnaf, &num, w); | |
| test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); | |
| CHECK(skew == 0); | |
| } | |
| { | |
| int wnaf_expected[8] = { -1, -1, -1, -1, -1, -1, -1, 0xf }; | |
| secp256k1_scalar_set_int(&num, 0xeeeeeeee); | |
| skew = secp256k1_wnaf_fixed(wnaf, &num, w); | |
| test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); | |
| CHECK(skew == 1); | |
| } | |
| { | |
| int wnaf_expected[8] = { 1, 0, 1, 0, 1, 0, 1, 0 }; | |
| secp256k1_scalar_set_int(&num, 0x01010101); | |
| skew = secp256k1_wnaf_fixed(wnaf, &num, w); | |
| test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); | |
| CHECK(skew == 0); | |
| } | |
| { | |
| int wnaf_expected[8] = { -0xf, 0, 0xf, -0xf, 0, 0xf, 1, 0 }; | |
| secp256k1_scalar_set_int(&num, 0x01ef1ef1); | |
| skew = secp256k1_wnaf_fixed(wnaf, &num, w); | |
| test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); | |
| CHECK(skew == 0); | |
| } | |
| } | |
| | |
| static void run_wnaf(void) { | |
| int i; | |
| secp256k1_scalar n; | |
| | |
| /* Test 0 for fixed wnaf */ | |
| test_fixed_wnaf_small(); | |
| /* Random tests */ | |
| for (i = 0; i < COUNT; i++) { | |
| testutil_random_scalar_order(&n); | |
| test_wnaf(&n, 4+(i%10)); | |
| test_fixed_wnaf(&n, 4 + (i % 10)); | |
| } | |
| secp256k1_scalar_set_int(&n, 0); | |
| CHECK(secp256k1_scalar_cond_negate(&n, 1) == -1); | |
| CHECK(secp256k1_scalar_is_zero(&n)); | |
| CHECK(secp256k1_scalar_cond_negate(&n, 0) == 1); | |
| CHECK(secp256k1_scalar_is_zero(&n)); | |
| } | |
| | |
| static int test_ecmult_accumulate_cb(secp256k1_scalar* sc, secp256k1_ge* pt, size_t idx, void* data) { | |
| const secp256k1_scalar* indata = (const secp256k1_scalar*)data; | |
| *sc = *indata; | |
| *pt = secp256k1_ge_const_g; | |
| CHECK(idx == 0); | |
| return 1; | |
| } | |
| | |
| static void test_ecmult_accumulate(secp256k1_sha256* acc, const secp256k1_scalar* x, secp256k1_scratch* scratch) { | |
| /* Compute x*G in 6 different ways, serialize it uncompressed, and feed it into acc. */ | |
| secp256k1_gej rj1, rj2, rj3, rj4, rj5, rj6, gj, infj; | |
| secp256k1_ge r; | |
| unsigned char bytes[65]; | |
| size_t size = 65; | |
| secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); | |
| secp256k1_gej_set_infinity(&infj); | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &rj1, x); | |
| secp256k1_ecmult(&rj2, &gj, x, &secp256k1_scalar_zero); | |
| secp256k1_ecmult(&rj3, &infj, &secp256k1_scalar_zero, x); | |
| CHECK(secp256k1_ecmult_multi_var(&CTX->error_callback, scratch, &rj4, x, NULL, NULL, 0)); | |
| CHECK(secp256k1_ecmult_multi_var(&CTX->error_callback, scratch, &rj5, &secp256k1_scalar_zero, test_ecmult_accumulate_cb, (void*)x, 1)); | |
| secp256k1_ecmult_const(&rj6, &secp256k1_ge_const_g, x); | |
| secp256k1_ge_set_gej_var(&r, &rj1); | |
| CHECK(secp256k1_gej_eq_ge_var(&rj2, &r)); | |
| CHECK(secp256k1_gej_eq_ge_var(&rj3, &r)); | |
| CHECK(secp256k1_gej_eq_ge_var(&rj4, &r)); | |
| CHECK(secp256k1_gej_eq_ge_var(&rj5, &r)); | |
| CHECK(secp256k1_gej_eq_ge_var(&rj6, &r)); | |
| if (secp256k1_ge_is_infinity(&r)) { | |
| /* Store infinity as 0x00 */ | |
| const unsigned char zerobyte[1] = {0}; | |
| secp256k1_sha256_write(acc, zerobyte, 1); | |
| } else { | |
| /* Store other points using their uncompressed serialization. */ | |
| secp256k1_eckey_pubkey_serialize(&r, bytes, &size, 0); | |
| CHECK(size == 65); | |
| secp256k1_sha256_write(acc, bytes, size); | |
| } | |
| } | |
| | |
| static void test_ecmult_constants_2bit(void) { | |
| /* Using test_ecmult_accumulate, test ecmult for: | |
| * - For i in 0..36: | |
| * - Key i | |
| * - Key -i | |
| * - For i in 0..255: | |
| * - For j in 1..255 (only odd values): | |
| * - Key (j*2^i) mod order | |
| */ | |
| secp256k1_scalar x; | |
| secp256k1_sha256 acc; | |
| unsigned char b32[32]; | |
| int i, j; | |
| secp256k1_scratch_space *scratch = secp256k1_scratch_space_create(CTX, 65536); | |
| | |
| /* Expected hash of all the computed points; created with an independent | |
| * implementation. */ | |
| static const unsigned char expected32[32] = { | |
| 0xe4, 0x71, 0x1b, 0x4d, 0x14, 0x1e, 0x68, 0x48, | |
| 0xb7, 0xaf, 0x47, 0x2b, 0x4c, 0xd2, 0x04, 0x14, | |
| 0x3a, 0x75, 0x87, 0x60, 0x1a, 0xf9, 0x63, 0x60, | |
| 0xd0, 0xcb, 0x1f, 0xaa, 0x85, 0x9a, 0xb7, 0xb4 | |
| }; | |
| secp256k1_sha256_initialize(&acc); | |
| for (i = 0; i <= 36; ++i) { | |
| secp256k1_scalar_set_int(&x, i); | |
| test_ecmult_accumulate(&acc, &x, scratch); | |
| secp256k1_scalar_negate(&x, &x); | |
| test_ecmult_accumulate(&acc, &x, scratch); | |
| }; | |
| for (i = 0; i < 256; ++i) { | |
| for (j = 1; j < 256; j += 2) { | |
| int k; | |
| secp256k1_scalar_set_int(&x, j); | |
| for (k = 0; k < i; ++k) secp256k1_scalar_add(&x, &x, &x); | |
| test_ecmult_accumulate(&acc, &x, scratch); | |
| } | |
| } | |
| secp256k1_sha256_finalize(&acc, b32); | |
| CHECK(secp256k1_memcmp_var(b32, expected32, 32) == 0); | |
| | |
| secp256k1_scratch_space_destroy(CTX, scratch); | |
| } | |
| | |
| static void test_ecmult_constants_sha(uint32_t prefix, size_t iter, const unsigned char* expected32) { | |
| /* Using test_ecmult_accumulate, test ecmult for: | |
| * - Key 0 | |
| * - Key 1 | |
| * - Key -1 | |
| * - For i in range(iter): | |
| * - Key SHA256(LE32(prefix) || LE16(i)) | |
| */ | |
| secp256k1_scalar x; | |
| secp256k1_sha256 acc; | |
| unsigned char b32[32]; | |
| unsigned char inp[6]; | |
| size_t i; | |
| secp256k1_scratch_space *scratch = secp256k1_scratch_space_create(CTX, 65536); | |
| | |
| inp[0] = prefix & 0xFF; | |
| inp[1] = (prefix >> 8) & 0xFF; | |
| inp[2] = (prefix >> 16) & 0xFF; | |
| inp[3] = (prefix >> 24) & 0xFF; | |
| secp256k1_sha256_initialize(&acc); | |
| secp256k1_scalar_set_int(&x, 0); | |
| test_ecmult_accumulate(&acc, &x, scratch); | |
| secp256k1_scalar_set_int(&x, 1); | |
| test_ecmult_accumulate(&acc, &x, scratch); | |
| secp256k1_scalar_negate(&x, &x); | |
| test_ecmult_accumulate(&acc, &x, scratch); | |
| | |
| for (i = 0; i < iter; ++i) { | |
| secp256k1_sha256 gen; | |
| inp[4] = i & 0xff; | |
| inp[5] = (i >> 8) & 0xff; | |
| secp256k1_sha256_initialize(&gen); | |
| secp256k1_sha256_write(&gen, inp, sizeof(inp)); | |
| secp256k1_sha256_finalize(&gen, b32); | |
| secp256k1_scalar_set_b32(&x, b32, NULL); | |
| test_ecmult_accumulate(&acc, &x, scratch); | |
| } | |
| secp256k1_sha256_finalize(&acc, b32); | |
| CHECK(secp256k1_memcmp_var(b32, expected32, 32) == 0); | |
| | |
| secp256k1_scratch_space_destroy(CTX, scratch); | |
| } | |
| | |
| static void run_ecmult_constants(void) { | |
| /* Expected hashes of all points in the tests below. Computed using an | |
| * independent implementation. */ | |
| static const unsigned char expected32_6bit20[32] = { | |
| 0x68, 0xb6, 0xed, 0x6f, 0x28, 0xca, 0xc9, 0x7f, | |
| 0x8e, 0x8b, 0xd6, 0xc0, 0x61, 0x79, 0x34, 0x6e, | |
| 0x5a, 0x8f, 0x2b, 0xbc, 0x3e, 0x1f, 0xc5, 0x2e, | |
| 0x2a, 0xd0, 0x45, 0x67, 0x7f, 0x95, 0x95, 0x8e | |
| }; | |
| static const unsigned char expected32_8bit8[32] = { | |
| 0x8b, 0x65, 0x8e, 0xea, 0x86, 0xae, 0x3c, 0x95, | |
| 0x90, 0xb6, 0x77, 0xa4, 0x8c, 0x76, 0xd9, 0xec, | |
| 0xf5, 0xab, 0x8a, 0x2f, 0xfd, 0xdb, 0x19, 0x12, | |
| 0x1a, 0xee, 0xe6, 0xb7, 0x6e, 0x05, 0x3f, 0xc6 | |
| }; | |
| /* For every combination of 6 bit positions out of 256, restricted to | |
| * 20-bit windows (i.e., the first and last bit position are no more than | |
| * 19 bits apart), all 64 bit patterns occur in the input scalars used in | |
| * this test. */ | |
| CONDITIONAL_TEST(1, "test_ecmult_constants_sha 1024") { | |
| test_ecmult_constants_sha(4808378u, 1024, expected32_6bit20); | |
| } | |
| | |
| /* For every combination of 8 consecutive bit positions, all 256 bit | |
| * patterns occur in the input scalars used in this test. */ | |
| CONDITIONAL_TEST(3, "test_ecmult_constants_sha 2048") { | |
| test_ecmult_constants_sha(1607366309u, 2048, expected32_8bit8); | |
| } | |
| | |
| CONDITIONAL_TEST(16, "test_ecmult_constants_2bit") { | |
| test_ecmult_constants_2bit(); | |
| } | |
| } | |
| | |
| static void test_ecmult_gen_blind(void) { | |
| /* Test ecmult_gen() blinding and confirm that the blinding changes, the affine points match, and the z's don't match. */ | |
| secp256k1_scalar key; | |
| secp256k1_scalar b; | |
| unsigned char seed32[32]; | |
| secp256k1_gej pgej; | |
| secp256k1_gej pgej2; | |
| secp256k1_ge p; | |
| secp256k1_ge pge; | |
| testutil_random_scalar_order_test(&key); | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &pgej, &key); | |
| testrand256(seed32); | |
| b = CTX->ecmult_gen_ctx.scalar_offset; | |
| p = CTX->ecmult_gen_ctx.ge_offset; | |
| secp256k1_ecmult_gen_blind(&CTX->ecmult_gen_ctx, seed32); | |
| CHECK(!secp256k1_scalar_eq(&b, &CTX->ecmult_gen_ctx.scalar_offset)); | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &pgej2, &key); | |
| CHECK(!gej_xyz_equals_gej(&pgej, &pgej2)); | |
| CHECK(!secp256k1_ge_eq_var(&p, &CTX->ecmult_gen_ctx.ge_offset)); | |
| secp256k1_ge_set_gej(&pge, &pgej); | |
| CHECK(secp256k1_gej_eq_ge_var(&pgej2, &pge)); | |
| } | |
| | |
| static void test_ecmult_gen_blind_reset(void) { | |
| /* Test ecmult_gen() blinding reset and confirm that the blinding is consistent. */ | |
| secp256k1_scalar b; | |
| secp256k1_ge p1, p2; | |
| secp256k1_ecmult_gen_blind(&CTX->ecmult_gen_ctx, 0); | |
| b = CTX->ecmult_gen_ctx.scalar_offset; | |
| p1 = CTX->ecmult_gen_ctx.ge_offset; | |
| secp256k1_ecmult_gen_blind(&CTX->ecmult_gen_ctx, 0); | |
| CHECK(secp256k1_scalar_eq(&b, &CTX->ecmult_gen_ctx.scalar_offset)); | |
| p2 = CTX->ecmult_gen_ctx.ge_offset; | |
| CHECK(secp256k1_ge_eq_var(&p1, &p2)); | |
| } | |
| | |
| /* Verify that ecmult_gen for scalars gn for which gn + scalar_offset = {-1,0,1}. */ | |
| static void test_ecmult_gen_edge_cases(void) { | |
| int i; | |
| secp256k1_gej res1, res2, res3; | |
| secp256k1_scalar gn = secp256k1_scalar_one; /* gn = 1 */ | |
| secp256k1_scalar_add(&gn, &gn, &CTX->ecmult_gen_ctx.scalar_offset); /* gn = 1 + scalar_offset */ | |
| secp256k1_scalar_negate(&gn, &gn); /* gn = -1 - scalar_offset */ | |
| | |
| for (i = -1; i < 2; ++i) { | |
| Loop condition is true. Entering loop body | |
| /* Run test with gn = i - scalar_offset (so that the ecmult_gen recoded value represents i). */ | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &res1, &gn); | |
| secp256k1_ecmult(&res2, NULL, &secp256k1_scalar_zero, &gn); | |
| Calling 'secp256k1_ecmult' | |
| Passing null pointer value via 2nd parameter 'a' | |
| secp256k1_ecmult_const(&res3, &secp256k1_ge_const_g, &gn); | |
| CHECK(secp256k1_gej_eq_var(&res1, &res2)); | |
| CHECK(secp256k1_gej_eq_var(&res1, &res3)); | |
| secp256k1_scalar_add(&gn, &gn, &secp256k1_scalar_one); | |
| } | |
| } | |
| | |
| static void run_ecmult_gen_blind(void) { | |
| int i; | |
| test_ecmult_gen_blind_reset(); | |
| test_ecmult_gen_edge_cases(); | |
| for (i = 0; i < 10; i++) { | |
| test_ecmult_gen_blind(); | |
| } | |
| } | |
| | |
| /***** ENDOMORPHISH TESTS *****/ | |
| static void test_scalar_split(const secp256k1_scalar* full) { | |
| secp256k1_scalar s, s1, slam; | |
| const unsigned char zero[32] = {0}; | |
| unsigned char tmp[32]; | |
| | |
| secp256k1_scalar_split_lambda(&s1, &slam, full); | |
| Calling 'secp256k1_scalar_split_lambda' | |
| | |
| /* check slam*lambda + s1 == full */ | |
| secp256k1_scalar_mul(&s, &secp256k1_const_lambda, &slam); | |
| secp256k1_scalar_add(&s, &s, &s1); | |
| CHECK(secp256k1_scalar_eq(&s, full)); | |
| | |
| /* check that both are <= 128 bits in size */ | |
| if (secp256k1_scalar_is_high(&s1)) { | |
| secp256k1_scalar_negate(&s1, &s1); | |
| } | |
| if (secp256k1_scalar_is_high(&slam)) { | |
| secp256k1_scalar_negate(&slam, &slam); | |
| } | |
| | |
| secp256k1_scalar_get_b32(tmp, &s1); | |
| CHECK(secp256k1_memcmp_var(zero, tmp, 16) == 0); | |
| secp256k1_scalar_get_b32(tmp, &slam); | |
| CHECK(secp256k1_memcmp_var(zero, tmp, 16) == 0); | |
| } | |
| | |
| | |
| static void run_endomorphism_tests(void) { | |
| unsigned i; | |
| static secp256k1_scalar s; | |
| test_scalar_split(&secp256k1_scalar_zero); | |
| Calling 'test_scalar_split' | |
| test_scalar_split(&secp256k1_scalar_one); | |
| secp256k1_scalar_negate(&s,&secp256k1_scalar_one); | |
| test_scalar_split(&s); | |
| test_scalar_split(&secp256k1_const_lambda); | |
| secp256k1_scalar_add(&s, &secp256k1_const_lambda, &secp256k1_scalar_one); | |
| test_scalar_split(&s); | |
| | |
| for (i = 0; i < 100U * COUNT; ++i) { | |
| secp256k1_scalar full; | |
| testutil_random_scalar_order_test(&full); | |
| test_scalar_split(&full); | |
| } | |
| for (i = 0; i < sizeof(scalars_near_split_bounds) / sizeof(scalars_near_split_bounds[0]); ++i) { | |
| test_scalar_split(&scalars_near_split_bounds[i]); | |
| } | |
| } | |
| | |
| static void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvalid) { | |
| unsigned char pubkeyc[65]; | |
| secp256k1_pubkey pubkey; | |
| secp256k1_ge ge; | |
| size_t pubkeyclen; | |
| | |
| for (pubkeyclen = 3; pubkeyclen <= 65; pubkeyclen++) { | |
| /* Smaller sizes are tested exhaustively elsewhere. */ | |
| int32_t i; | |
| memcpy(&pubkeyc[1], input, 64); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkeyc[pubkeyclen], 65 - pubkeyclen); | |
| for (i = 0; i < 256; i++) { | |
| /* Try all type bytes. */ | |
| int xpass; | |
| int ypass; | |
| int ysign; | |
| pubkeyc[0] = i; | |
| /* What sign does this point have? */ | |
| ysign = (input[63] & 1) + 2; | |
| /* For the current type (i) do we expect parsing to work? Handled all of compressed/uncompressed/hybrid. */ | |
| xpass = xvalid && (pubkeyclen == 33) && ((i & 254) == 2); | |
| /* Do we expect a parse and re-serialize as uncompressed to give a matching y? */ | |
| ypass = xvalid && yvalid && ((i & 4) == ((pubkeyclen == 65) << 2)) && | |
| ((i == 4) || ((i & 251) == ysign)) && ((pubkeyclen == 33) || (pubkeyclen == 65)); | |
| if (xpass || ypass) { | |
| /* These cases must parse. */ | |
| unsigned char pubkeyo[65]; | |
| size_t outl; | |
| memset(&pubkey, 0, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, pubkeyc, pubkeyclen) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| outl = 65; | |
| SECP256K1_CHECKMEM_UNDEFINE(pubkeyo, 65); | |
| CHECK(secp256k1_ec_pubkey_serialize(CTX, pubkeyo, &outl, &pubkey, SECP256K1_EC_COMPRESSED) == 1); | |
| SECP256K1_CHECKMEM_CHECK(pubkeyo, outl); | |
| CHECK(outl == 33); | |
| CHECK(secp256k1_memcmp_var(&pubkeyo[1], &pubkeyc[1], 32) == 0); | |
| CHECK((pubkeyclen != 33) || (pubkeyo[0] == pubkeyc[0])); | |
| if (ypass) { | |
| /* This test isn't always done because we decode with alternative signs, so the y won't match. */ | |
| CHECK(pubkeyo[0] == ysign); | |
| CHECK(secp256k1_pubkey_load(CTX, &ge, &pubkey) == 1); | |
| memset(&pubkey, 0, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| secp256k1_pubkey_save(&pubkey, &ge); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| outl = 65; | |
| SECP256K1_CHECKMEM_UNDEFINE(pubkeyo, 65); | |
| CHECK(secp256k1_ec_pubkey_serialize(CTX, pubkeyo, &outl, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 1); | |
| SECP256K1_CHECKMEM_CHECK(pubkeyo, outl); | |
| CHECK(outl == 65); | |
| CHECK(pubkeyo[0] == 4); | |
| CHECK(secp256k1_memcmp_var(&pubkeyo[1], input, 64) == 0); | |
| } | |
| } else { | |
| /* These cases must fail to parse. */ | |
| memset(&pubkey, 0xfe, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, pubkeyc, pubkeyclen) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_pubkey_load(CTX, &ge, &pubkey)); | |
| } | |
| } | |
| } | |
| } | |
| | |
| static void run_ec_pubkey_parse_test(void) { | |
| #define SECP256K1_EC_PARSE_TEST_NVALID (12) | |
| const unsigned char valid[SECP256K1_EC_PARSE_TEST_NVALID][64] = { | |
| { | |
| /* Point with leading and trailing zeros in x and y serialization. */ | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x52, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x64, 0xef, 0xa1, 0x7b, 0x77, 0x61, 0xe1, 0xe4, 0x27, 0x06, 0x98, 0x9f, 0xb4, 0x83, | |
| 0xb8, 0xd2, 0xd4, 0x9b, 0xf7, 0x8f, 0xae, 0x98, 0x03, 0xf0, 0x99, 0xb8, 0x34, 0xed, 0xeb, 0x00 | |
| }, | |
| { | |
| /* Point with x equal to a 3rd root of unity.*/ | |
| 0x7a, 0xe9, 0x6a, 0x2b, 0x65, 0x7c, 0x07, 0x10, 0x6e, 0x64, 0x47, 0x9e, 0xac, 0x34, 0x34, 0xe9, | |
| 0x9c, 0xf0, 0x49, 0x75, 0x12, 0xf5, 0x89, 0x95, 0xc1, 0x39, 0x6c, 0x28, 0x71, 0x95, 0x01, 0xee, | |
| 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, | |
| 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee, | |
| }, | |
| { | |
| /* Point with largest x. (1/2) */ | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2c, | |
| 0x0e, 0x99, 0x4b, 0x14, 0xea, 0x72, 0xf8, 0xc3, 0xeb, 0x95, 0xc7, 0x1e, 0xf6, 0x92, 0x57, 0x5e, | |
| 0x77, 0x50, 0x58, 0x33, 0x2d, 0x7e, 0x52, 0xd0, 0x99, 0x5c, 0xf8, 0x03, 0x88, 0x71, 0xb6, 0x7d, | |
| }, | |
| { | |
| /* Point with largest x. (2/2) */ | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2c, | |
| 0xf1, 0x66, 0xb4, 0xeb, 0x15, 0x8d, 0x07, 0x3c, 0x14, 0x6a, 0x38, 0xe1, 0x09, 0x6d, 0xa8, 0xa1, | |
| 0x88, 0xaf, 0xa7, 0xcc, 0xd2, 0x81, 0xad, 0x2f, 0x66, 0xa3, 0x07, 0xfb, 0x77, 0x8e, 0x45, 0xb2, | |
| }, | |
| { | |
| /* Point with smallest x. (1/2) */ | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, | |
| 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee, | |
| }, | |
| { | |
| /* Point with smallest x. (2/2) */ | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb, | |
| 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41, | |
| }, | |
| { | |
| /* Point with largest y. (1/3) */ | |
| 0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, | |
| 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, | |
| }, | |
| { | |
| /* Point with largest y. (2/3) */ | |
| 0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, | |
| 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, | |
| }, | |
| { | |
| /* Point with largest y. (3/3) */ | |
| 0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc, | |
| 0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, | |
| }, | |
| { | |
| /* Point with smallest y. (1/3) */ | |
| 0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, | |
| 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| }, | |
| { | |
| /* Point with smallest y. (2/3) */ | |
| 0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, | |
| 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| }, | |
| { | |
| /* Point with smallest y. (3/3) */ | |
| 0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc, | |
| 0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 | |
| } | |
| }; | |
| #define SECP256K1_EC_PARSE_TEST_NXVALID (4) | |
| const unsigned char onlyxvalid[SECP256K1_EC_PARSE_TEST_NXVALID][64] = { | |
| { | |
| /* Valid if y overflow ignored (y = 1 mod p). (1/3) */ | |
| 0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, | |
| 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, | |
| }, | |
| { | |
| /* Valid if y overflow ignored (y = 1 mod p). (2/3) */ | |
| 0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, | |
| 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, | |
| }, | |
| { | |
| /* Valid if y overflow ignored (y = 1 mod p). (3/3)*/ | |
| 0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc, | |
| 0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, | |
| }, | |
| { | |
| /* x on curve, y is from y^2 = x^3 + 8. */ | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 | |
| } | |
| }; | |
| #define SECP256K1_EC_PARSE_TEST_NINVALID (7) | |
| const unsigned char invalid[SECP256K1_EC_PARSE_TEST_NINVALID][64] = { | |
| { | |
| /* x is third root of -8, y is -1 * (x^3+7); also on the curve for y^2 = x^3 + 9. */ | |
| 0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, | |
| 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| }, | |
| { | |
| /* Valid if x overflow ignored (x = 1 mod p). */ | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, | |
| 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, | |
| 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee, | |
| }, | |
| { | |
| /* Valid if x overflow ignored (x = 1 mod p). */ | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, | |
| 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb, | |
| 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41, | |
| }, | |
| { | |
| /* x is -1, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 5. */ | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, | |
| 0xf4, 0x84, 0x14, 0x5c, 0xb0, 0x14, 0x9b, 0x82, 0x5d, 0xff, 0x41, 0x2f, 0xa0, 0x52, 0xa8, 0x3f, | |
| 0xcb, 0x72, 0xdb, 0x61, 0xd5, 0x6f, 0x37, 0x70, 0xce, 0x06, 0x6b, 0x73, 0x49, 0xa2, 0xaa, 0x28, | |
| }, | |
| { | |
| /* x is -1, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 5. */ | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, | |
| 0x0b, 0x7b, 0xeb, 0xa3, 0x4f, 0xeb, 0x64, 0x7d, 0xa2, 0x00, 0xbe, 0xd0, 0x5f, 0xad, 0x57, 0xc0, | |
| 0x34, 0x8d, 0x24, 0x9e, 0x2a, 0x90, 0xc8, 0x8f, 0x31, 0xf9, 0x94, 0x8b, 0xb6, 0x5d, 0x52, 0x07, | |
| }, | |
| { | |
| /* x is zero, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 7. */ | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x8f, 0x53, 0x7e, 0xef, 0xdf, 0xc1, 0x60, 0x6a, 0x07, 0x27, 0xcd, 0x69, 0xb4, 0xa7, 0x33, 0x3d, | |
| 0x38, 0xed, 0x44, 0xe3, 0x93, 0x2a, 0x71, 0x79, 0xee, 0xcb, 0x4b, 0x6f, 0xba, 0x93, 0x60, 0xdc, | |
| }, | |
| { | |
| /* x is zero, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 7. */ | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x70, 0xac, 0x81, 0x10, 0x20, 0x3e, 0x9f, 0x95, 0xf8, 0xd8, 0x32, 0x96, 0x4b, 0x58, 0xcc, 0xc2, | |
| 0xc7, 0x12, 0xbb, 0x1c, 0x6c, 0xd5, 0x8e, 0x86, 0x11, 0x34, 0xb4, 0x8f, 0x45, 0x6c, 0x9b, 0x53 | |
| } | |
| }; | |
| const unsigned char pubkeyc[66] = { | |
| /* Serialization of G. */ | |
| 0x04, 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, 0xAC, 0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B, | |
| 0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, 0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17, | |
| 0x98, 0x48, 0x3A, 0xDA, 0x77, 0x26, 0xA3, 0xC4, 0x65, 0x5D, 0xA4, 0xFB, 0xFC, 0x0E, 0x11, 0x08, | |
| 0xA8, 0xFD, 0x17, 0xB4, 0x48, 0xA6, 0x85, 0x54, 0x19, 0x9C, 0x47, 0xD0, 0x8F, 0xFB, 0x10, 0xD4, | |
| 0xB8, 0x00 | |
| }; | |
| unsigned char sout[65]; | |
| unsigned char shortkey[2] = { 0 }; | |
| secp256k1_ge ge; | |
| secp256k1_pubkey pubkey; | |
| size_t len; | |
| int32_t i; | |
| | |
| /* Nothing should be reading this far into pubkeyc. */ | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkeyc[65], 1); | |
| /* Zero length claimed, fail, zeroize, no illegal arg error. */ | |
| memset(&pubkey, 0xfe, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(shortkey, 2); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, shortkey, 0) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_pubkey_load(CTX, &ge, &pubkey)); | |
| /* Length one claimed, fail, zeroize, no illegal arg error. */ | |
| for (i = 0; i < 256 ; i++) { | |
| memset(&pubkey, 0xfe, sizeof(pubkey)); | |
| shortkey[0] = i; | |
| SECP256K1_CHECKMEM_UNDEFINE(&shortkey[1], 1); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, shortkey, 1) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_pubkey_load(CTX, &ge, &pubkey)); | |
| } | |
| /* Length two claimed, fail, zeroize, no illegal arg error. */ | |
| for (i = 0; i < 65536 ; i++) { | |
| memset(&pubkey, 0xfe, sizeof(pubkey)); | |
| shortkey[0] = i & 255; | |
| shortkey[1] = i >> 8; | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, shortkey, 2) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_pubkey_load(CTX, &ge, &pubkey)); | |
| } | |
| memset(&pubkey, 0xfe, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| /* 33 bytes claimed on otherwise valid input starting with 0x04, fail, zeroize output, no illegal arg error. */ | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, pubkeyc, 33) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_pubkey_load(CTX, &ge, &pubkey)); | |
| /* NULL pubkey, illegal arg error. Pubkey isn't rewritten before this step, since it's NULL into the parser. */ | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_parse(CTX, NULL, pubkeyc, 65)); | |
| /* NULL input string. Illegal arg and zeroize output. */ | |
| memset(&pubkey, 0xfe, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_parse(CTX, &pubkey, NULL, 65)); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_pubkey_load(CTX, &ge, &pubkey)); | |
| /* 64 bytes claimed on input starting with 0x04, fail, zeroize output, no illegal arg error. */ | |
| memset(&pubkey, 0xfe, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, pubkeyc, 64) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_pubkey_load(CTX, &ge, &pubkey)); | |
| /* 66 bytes claimed, fail, zeroize output, no illegal arg error. */ | |
| memset(&pubkey, 0xfe, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, pubkeyc, 66) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_pubkey_load(CTX, &ge, &pubkey)); | |
| /* Valid parse. */ | |
| memset(&pubkey, 0, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, pubkeyc, 65) == 1); | |
| CHECK(secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, pubkeyc, 65) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&ge, sizeof(ge)); | |
| CHECK(secp256k1_pubkey_load(CTX, &ge, &pubkey) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&ge.x, sizeof(ge.x)); | |
| SECP256K1_CHECKMEM_CHECK(&ge.y, sizeof(ge.y)); | |
| SECP256K1_CHECKMEM_CHECK(&ge.infinity, sizeof(ge.infinity)); | |
| CHECK(secp256k1_ge_eq_var(&ge, &secp256k1_ge_const_g)); | |
| /* secp256k1_ec_pubkey_serialize illegal args. */ | |
| len = 65; | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_serialize(CTX, NULL, &len, &pubkey, SECP256K1_EC_UNCOMPRESSED)); | |
| CHECK(len == 0); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_serialize(CTX, sout, NULL, &pubkey, SECP256K1_EC_UNCOMPRESSED)); | |
| len = 65; | |
| SECP256K1_CHECKMEM_UNDEFINE(sout, 65); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_serialize(CTX, sout, &len, NULL, SECP256K1_EC_UNCOMPRESSED)); | |
| SECP256K1_CHECKMEM_CHECK(sout, 65); | |
| CHECK(len == 0); | |
| len = 65; | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_serialize(CTX, sout, &len, &pubkey, ~0)); | |
| CHECK(len == 0); | |
| len = 65; | |
| SECP256K1_CHECKMEM_UNDEFINE(sout, 65); | |
| CHECK(secp256k1_ec_pubkey_serialize(CTX, sout, &len, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 1); | |
| SECP256K1_CHECKMEM_CHECK(sout, 65); | |
| CHECK(len == 65); | |
| /* Multiple illegal args. Should still set arg error only once. */ | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_parse(CTX, NULL, NULL, 65)); | |
| /* Try a bunch of prefabbed points with all possible encodings. */ | |
| for (i = 0; i < SECP256K1_EC_PARSE_TEST_NVALID; i++) { | |
| ec_pubkey_parse_pointtest(valid[i], 1, 1); | |
| } | |
| for (i = 0; i < SECP256K1_EC_PARSE_TEST_NXVALID; i++) { | |
| ec_pubkey_parse_pointtest(onlyxvalid[i], 1, 0); | |
| } | |
| for (i = 0; i < SECP256K1_EC_PARSE_TEST_NINVALID; i++) { | |
| ec_pubkey_parse_pointtest(invalid[i], 0, 0); | |
| } | |
| } | |
| | |
| static void run_eckey_edge_case_test(void) { | |
| const unsigned char *orderc = secp256k1_group_order_bytes; | |
| const unsigned char zeros[sizeof(secp256k1_pubkey)] = {0x00}; | |
| unsigned char ctmp[33]; | |
| unsigned char ctmp2[33]; | |
| secp256k1_pubkey pubkey; | |
| secp256k1_pubkey pubkey2; | |
| secp256k1_pubkey pubkey_one; | |
| secp256k1_pubkey pubkey_negone; | |
| const secp256k1_pubkey *pubkeys[3]; | |
| size_t len; | |
| /* Group order is too large, reject. */ | |
| CHECK(secp256k1_ec_seckey_verify(CTX, orderc) == 0); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, orderc) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); | |
| /* Maximum value is too large, reject. */ | |
| memset(ctmp, 255, 32); | |
| CHECK(secp256k1_ec_seckey_verify(CTX, ctmp) == 0); | |
| memset(&pubkey, 1, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, ctmp) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); | |
| /* Zero is too small, reject. */ | |
| memset(ctmp, 0, 32); | |
| CHECK(secp256k1_ec_seckey_verify(CTX, ctmp) == 0); | |
| memset(&pubkey, 1, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, ctmp) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); | |
| /* One must be accepted. */ | |
| ctmp[31] = 0x01; | |
| CHECK(secp256k1_ec_seckey_verify(CTX, ctmp) == 1); | |
| memset(&pubkey, 0, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, ctmp) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); | |
| pubkey_one = pubkey; | |
| /* Group order + 1 is too large, reject. */ | |
| memcpy(ctmp, orderc, 32); | |
| ctmp[31] = 0x42; | |
| CHECK(secp256k1_ec_seckey_verify(CTX, ctmp) == 0); | |
| memset(&pubkey, 1, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, ctmp) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); | |
| /* -1 must be accepted. */ | |
| ctmp[31] = 0x40; | |
| CHECK(secp256k1_ec_seckey_verify(CTX, ctmp) == 1); | |
| memset(&pubkey, 0, sizeof(pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, ctmp) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); | |
| pubkey_negone = pubkey; | |
| /* Tweak of zero leaves the value unchanged. */ | |
| memset(ctmp2, 0, 32); | |
| CHECK(secp256k1_ec_seckey_tweak_add(CTX, ctmp, ctmp2) == 1); | |
| CHECK(secp256k1_memcmp_var(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40); | |
| memcpy(&pubkey2, &pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_tweak_add(CTX, &pubkey, ctmp2) == 1); | |
| CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); | |
| /* Multiply tweak of zero zeroizes the output. */ | |
| CHECK(secp256k1_ec_seckey_tweak_mul(CTX, ctmp, ctmp2) == 0); | |
| CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); | |
| CHECK(secp256k1_ec_pubkey_tweak_mul(CTX, &pubkey, ctmp2) == 0); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); | |
| memcpy(&pubkey, &pubkey2, sizeof(pubkey)); | |
| /* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing | |
| seckey, the seckey is zeroized. */ | |
| memcpy(ctmp, orderc, 32); | |
| memset(ctmp2, 0, 32); | |
| ctmp2[31] = 0x01; | |
| CHECK(secp256k1_ec_seckey_verify(CTX, ctmp2) == 1); | |
| CHECK(secp256k1_ec_seckey_verify(CTX, ctmp) == 0); | |
| CHECK(secp256k1_ec_seckey_tweak_add(CTX, ctmp, ctmp2) == 0); | |
| CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); | |
| memcpy(ctmp, orderc, 32); | |
| CHECK(secp256k1_ec_seckey_tweak_mul(CTX, ctmp, ctmp2) == 0); | |
| CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); | |
| /* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing | |
| tweak, the seckey is zeroized. */ | |
| memcpy(ctmp, orderc, 32); | |
| ctmp[31] = 0x40; | |
| CHECK(secp256k1_ec_seckey_tweak_add(CTX, ctmp, orderc) == 0); | |
| CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); | |
| memcpy(ctmp, orderc, 32); | |
| ctmp[31] = 0x40; | |
| CHECK(secp256k1_ec_seckey_tweak_mul(CTX, ctmp, orderc) == 0); | |
| CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); | |
| memcpy(ctmp, orderc, 32); | |
| ctmp[31] = 0x40; | |
| /* If pubkey_tweak_add or pubkey_tweak_mul are called with an overflowing | |
| tweak, the pubkey is zeroized. */ | |
| CHECK(secp256k1_ec_pubkey_tweak_add(CTX, &pubkey, orderc) == 0); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); | |
| memcpy(&pubkey, &pubkey2, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_tweak_mul(CTX, &pubkey, orderc) == 0); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); | |
| memcpy(&pubkey, &pubkey2, sizeof(pubkey)); | |
| /* If the resulting key in secp256k1_ec_seckey_tweak_add and | |
| * secp256k1_ec_pubkey_tweak_add is 0 the functions fail and in the latter | |
| * case the pubkey is zeroized. */ | |
| memcpy(ctmp, orderc, 32); | |
| ctmp[31] = 0x40; | |
| memset(ctmp2, 0, 32); | |
| ctmp2[31] = 1; | |
| CHECK(secp256k1_ec_seckey_tweak_add(CTX, ctmp2, ctmp) == 0); | |
| CHECK(secp256k1_memcmp_var(zeros, ctmp2, 32) == 0); | |
| ctmp2[31] = 1; | |
| CHECK(secp256k1_ec_pubkey_tweak_add(CTX, &pubkey, ctmp2) == 0); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); | |
| memcpy(&pubkey, &pubkey2, sizeof(pubkey)); | |
| /* Tweak computation wraps and results in a key of 1. */ | |
| ctmp2[31] = 2; | |
| CHECK(secp256k1_ec_seckey_tweak_add(CTX, ctmp2, ctmp) == 1); | |
| CHECK(secp256k1_memcmp_var(ctmp2, zeros, 31) == 0 && ctmp2[31] == 1); | |
| ctmp2[31] = 2; | |
| CHECK(secp256k1_ec_pubkey_tweak_add(CTX, &pubkey, ctmp2) == 1); | |
| ctmp2[31] = 1; | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey2, ctmp2) == 1); | |
| CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); | |
| /* Tweak mul * 2 = 1+1. */ | |
| CHECK(secp256k1_ec_pubkey_tweak_add(CTX, &pubkey, ctmp2) == 1); | |
| ctmp2[31] = 2; | |
| CHECK(secp256k1_ec_pubkey_tweak_mul(CTX, &pubkey2, ctmp2) == 1); | |
| CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); | |
| /* Zeroize pubkey on parse error. */ | |
| memset(&pubkey, 0, 32); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_tweak_add(CTX, &pubkey, ctmp2)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); | |
| memcpy(&pubkey, &pubkey2, sizeof(pubkey)); | |
| memset(&pubkey2, 0, 32); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_tweak_mul(CTX, &pubkey2, ctmp2)); | |
| CHECK(secp256k1_memcmp_var(&pubkey2, zeros, sizeof(pubkey2)) == 0); | |
| /* Plain argument errors. */ | |
| CHECK(secp256k1_ec_seckey_verify(CTX, ctmp) == 1); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_seckey_verify(CTX, NULL)); | |
| memset(ctmp2, 0, 32); | |
| ctmp2[31] = 4; | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_tweak_add(CTX, NULL, ctmp2)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_tweak_add(CTX, &pubkey, NULL)); | |
| memset(ctmp2, 0, 32); | |
| ctmp2[31] = 4; | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_tweak_mul(CTX, NULL, ctmp2)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_tweak_mul(CTX, &pubkey, NULL)); | |
| memset(ctmp2, 0, 32); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_seckey_tweak_add(CTX, NULL, ctmp2)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_seckey_tweak_add(CTX, ctmp, NULL)); | |
| memset(ctmp2, 0, 32); | |
| ctmp2[31] = 1; | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_seckey_tweak_mul(CTX, NULL, ctmp2)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_seckey_tweak_mul(CTX, ctmp, NULL)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_create(CTX, NULL, ctmp)); | |
| memset(&pubkey, 1, sizeof(pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_create(CTX, &pubkey, NULL)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); | |
| /* secp256k1_ec_pubkey_combine tests. */ | |
| pubkeys[0] = &pubkey_one; | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkeys[0], sizeof(secp256k1_pubkey *)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkeys[1], sizeof(secp256k1_pubkey *)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkeys[2], sizeof(secp256k1_pubkey *)); | |
| memset(&pubkey, 255, sizeof(secp256k1_pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_combine(CTX, &pubkey, pubkeys, 0)); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_combine(CTX, NULL, pubkeys, 1)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); | |
| memset(&pubkey, 255, sizeof(secp256k1_pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_combine(CTX, &pubkey, NULL, 1)); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); | |
| pubkeys[0] = &pubkey_negone; | |
| memset(&pubkey, 255, sizeof(secp256k1_pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_ec_pubkey_combine(CTX, &pubkey, pubkeys, 1) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); | |
| len = 33; | |
| CHECK(secp256k1_ec_pubkey_serialize(CTX, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1); | |
| CHECK(secp256k1_ec_pubkey_serialize(CTX, ctmp2, &len, &pubkey_negone, SECP256K1_EC_COMPRESSED) == 1); | |
| CHECK(secp256k1_memcmp_var(ctmp, ctmp2, 33) == 0); | |
| /* Result is infinity. */ | |
| pubkeys[0] = &pubkey_one; | |
| pubkeys[1] = &pubkey_negone; | |
| memset(&pubkey, 255, sizeof(secp256k1_pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_ec_pubkey_combine(CTX, &pubkey, pubkeys, 2) == 0); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); | |
| /* Passes through infinity but comes out one. */ | |
| pubkeys[2] = &pubkey_one; | |
| memset(&pubkey, 255, sizeof(secp256k1_pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_ec_pubkey_combine(CTX, &pubkey, pubkeys, 3) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); | |
| len = 33; | |
| CHECK(secp256k1_ec_pubkey_serialize(CTX, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1); | |
| CHECK(secp256k1_ec_pubkey_serialize(CTX, ctmp2, &len, &pubkey_one, SECP256K1_EC_COMPRESSED) == 1); | |
| CHECK(secp256k1_memcmp_var(ctmp, ctmp2, 33) == 0); | |
| /* Adds to two. */ | |
| pubkeys[1] = &pubkey_one; | |
| memset(&pubkey, 255, sizeof(secp256k1_pubkey)); | |
| SECP256K1_CHECKMEM_UNDEFINE(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_ec_pubkey_combine(CTX, &pubkey, pubkeys, 2) == 1); | |
| SECP256K1_CHECKMEM_CHECK(&pubkey, sizeof(secp256k1_pubkey)); | |
| CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); | |
| } | |
| | |
| static void run_eckey_negate_test(void) { | |
| unsigned char seckey[32]; | |
| unsigned char seckey_tmp[32]; | |
| | |
| testutil_random_scalar_order_b32(seckey); | |
| memcpy(seckey_tmp, seckey, 32); | |
| | |
| /* Verify negation changes the key and changes it back */ | |
| CHECK(secp256k1_ec_seckey_negate(CTX, seckey) == 1); | |
| CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) != 0); | |
| CHECK(secp256k1_ec_seckey_negate(CTX, seckey) == 1); | |
| CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0); | |
| | |
| /* Negating all 0s fails */ | |
| memset(seckey, 0, 32); | |
| memset(seckey_tmp, 0, 32); | |
| CHECK(secp256k1_ec_seckey_negate(CTX, seckey) == 0); | |
| /* Check that seckey is not modified */ | |
| CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0); | |
| | |
| /* Negating an overflowing seckey fails and the seckey is zeroed. In this | |
| * test, the seckey has 16 random bytes to ensure that ec_seckey_negate | |
| * doesn't just set seckey to a constant value in case of failure. */ | |
| testutil_random_scalar_order_b32(seckey); | |
| memset(seckey, 0xFF, 16); | |
| memset(seckey_tmp, 0, 32); | |
| CHECK(secp256k1_ec_seckey_negate(CTX, seckey) == 0); | |
| CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0); | |
| } | |
| | |
| static void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) { | |
| secp256k1_scalar nonce; | |
| do { | |
| testutil_random_scalar_order_test(&nonce); | |
| } while(!secp256k1_ecdsa_sig_sign(&CTX->ecmult_gen_ctx, sigr, sigs, key, msg, &nonce, recid)); | |
| } | |
| | |
| static void test_ecdsa_sign_verify(void) { | |
| secp256k1_gej pubj; | |
| secp256k1_ge pub; | |
| secp256k1_scalar one; | |
| secp256k1_scalar msg, key; | |
| secp256k1_scalar sigr, sigs; | |
| int getrec; | |
| int recid; | |
| testutil_random_scalar_order_test(&msg); | |
| testutil_random_scalar_order_test(&key); | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &pubj, &key); | |
| secp256k1_ge_set_gej(&pub, &pubj); | |
| getrec = testrand_bits(1); | |
| /* The specific way in which this conditional is written sidesteps a potential bug in clang. | |
| See the commit messages of the commit that introduced this comment for details. */ | |
| if (getrec) { | |
| random_sign(&sigr, &sigs, &key, &msg, &recid); | |
| CHECK(recid >= 0 && recid < 4); | |
| } else { | |
| random_sign(&sigr, &sigs, &key, &msg, NULL); | |
| } | |
| CHECK(secp256k1_ecdsa_sig_verify(&sigr, &sigs, &pub, &msg)); | |
| secp256k1_scalar_set_int(&one, 1); | |
| secp256k1_scalar_add(&msg, &msg, &one); | |
| CHECK(!secp256k1_ecdsa_sig_verify(&sigr, &sigs, &pub, &msg)); | |
| } | |
| | |
| static void run_ecdsa_sign_verify(void) { | |
| int i; | |
| for (i = 0; i < 10*COUNT; i++) { | |
| test_ecdsa_sign_verify(); | |
| } | |
| } | |
| | |
| /** Dummy nonce generation function that just uses a precomputed nonce, and fails if it is not accepted. Use only for testing. */ | |
| static int precomputed_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { | |
| (void)msg32; | |
| (void)key32; | |
| (void)algo16; | |
| memcpy(nonce32, data, 32); | |
| return (counter == 0); | |
| } | |
| | |
| static int nonce_function_test_fail(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { | |
| /* Dummy nonce generator that has a fatal error on the first counter value. */ | |
| if (counter == 0) { | |
| return 0; | |
| } | |
| return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 1); | |
| } | |
| | |
| static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { | |
| /* Dummy nonce generator that produces unacceptable nonces for the first several counter values. */ | |
| if (counter < 3) { | |
| memset(nonce32, counter==0 ? 0 : 255, 32); | |
| if (counter == 2) { | |
| nonce32[31]--; | |
| } | |
| return 1; | |
| } | |
| if (counter < 5) { | |
| memcpy(nonce32, secp256k1_group_order_bytes, 32); | |
| if (counter == 4) { | |
| nonce32[31]++; | |
| } | |
| return 1; | |
| } | |
| /* Retry rate of 6979 is negligible esp. as we only call this in deterministic tests. */ | |
| /* If someone does fine a case where it retries for secp256k1, we'd like to know. */ | |
| if (counter > 5) { | |
| return 0; | |
| } | |
| return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 5); | |
| } | |
| | |
| static int is_empty_signature(const secp256k1_ecdsa_signature *sig) { | |
| static const unsigned char res[sizeof(secp256k1_ecdsa_signature)] = {0}; | |
| return secp256k1_memcmp_var(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0; | |
| } | |
| | |
| static void test_ecdsa_end_to_end(void) { | |
| unsigned char extra[32] = {0x00}; | |
| unsigned char privkey[32]; | |
| unsigned char message[32]; | |
| unsigned char privkey2[32]; | |
| secp256k1_ecdsa_signature signature[6]; | |
| secp256k1_scalar r, s; | |
| unsigned char sig[74]; | |
| size_t siglen = 74; | |
| unsigned char pubkeyc[65]; | |
| size_t pubkeyclen = 65; | |
| secp256k1_pubkey pubkey; | |
| secp256k1_pubkey pubkey_tmp; | |
| unsigned char seckey[300]; | |
| size_t seckeylen = 300; | |
| | |
| /* Generate a random key and message. */ | |
| { | |
| secp256k1_scalar msg, key; | |
| testutil_random_scalar_order_test(&msg); | |
| testutil_random_scalar_order_test(&key); | |
| secp256k1_scalar_get_b32(privkey, &key); | |
| secp256k1_scalar_get_b32(message, &msg); | |
| } | |
| | |
| /* Construct and verify corresponding public key. */ | |
| CHECK(secp256k1_ec_seckey_verify(CTX, privkey) == 1); | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, privkey) == 1); | |
| | |
| /* Verify exporting and importing public key. */ | |
| CHECK(secp256k1_ec_pubkey_serialize(CTX, pubkeyc, &pubkeyclen, &pubkey, testrand_bits(1) == 1 ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED)); | |
| memset(&pubkey, 0, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, pubkeyc, pubkeyclen) == 1); | |
| | |
| /* Verify negation changes the key and changes it back */ | |
| memcpy(&pubkey_tmp, &pubkey, sizeof(pubkey)); | |
| CHECK(secp256k1_ec_pubkey_negate(CTX, &pubkey_tmp) == 1); | |
| CHECK(secp256k1_memcmp_var(&pubkey_tmp, &pubkey, sizeof(pubkey)) != 0); | |
| CHECK(secp256k1_ec_pubkey_negate(CTX, &pubkey_tmp) == 1); | |
| CHECK(secp256k1_memcmp_var(&pubkey_tmp, &pubkey, sizeof(pubkey)) == 0); | |
| | |
| /* Verify private key import and export. */ | |
| CHECK(ec_privkey_export_der(CTX, seckey, &seckeylen, privkey, testrand_bits(1) == 1)); | |
| CHECK(ec_privkey_import_der(CTX, privkey2, seckey, seckeylen) == 1); | |
| CHECK(secp256k1_memcmp_var(privkey, privkey2, 32) == 0); | |
| | |
| /* Optionally tweak the keys using addition. */ | |
| if (testrand_int(3) == 0) { | |
| int ret1; | |
| int ret2; | |
| unsigned char rnd[32]; | |
| secp256k1_pubkey pubkey2; | |
| testrand256_test(rnd); | |
| ret1 = secp256k1_ec_seckey_tweak_add(CTX, privkey, rnd); | |
| ret2 = secp256k1_ec_pubkey_tweak_add(CTX, &pubkey, rnd); | |
| CHECK(ret1 == ret2); | |
| if (ret1 == 0) { | |
| return; | |
| } | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey2, privkey) == 1); | |
| CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); | |
| } | |
| | |
| /* Optionally tweak the keys using multiplication. */ | |
| if (testrand_int(3) == 0) { | |
| int ret1; | |
| int ret2; | |
| unsigned char rnd[32]; | |
| secp256k1_pubkey pubkey2; | |
| testrand256_test(rnd); | |
| ret1 = secp256k1_ec_seckey_tweak_mul(CTX, privkey, rnd); | |
| ret2 = secp256k1_ec_pubkey_tweak_mul(CTX, &pubkey, rnd); | |
| CHECK(ret1 == ret2); | |
| if (ret1 == 0) { | |
| return; | |
| } | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey2, privkey) == 1); | |
| CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); | |
| } | |
| | |
| /* Sign. */ | |
| CHECK(secp256k1_ecdsa_sign(CTX, &signature[0], message, privkey, NULL, NULL) == 1); | |
| CHECK(secp256k1_ecdsa_sign(CTX, &signature[4], message, privkey, NULL, NULL) == 1); | |
| CHECK(secp256k1_ecdsa_sign(CTX, &signature[1], message, privkey, NULL, extra) == 1); | |
| extra[31] = 1; | |
| CHECK(secp256k1_ecdsa_sign(CTX, &signature[2], message, privkey, NULL, extra) == 1); | |
| extra[31] = 0; | |
| extra[0] = 1; | |
| CHECK(secp256k1_ecdsa_sign(CTX, &signature[3], message, privkey, NULL, extra) == 1); | |
| CHECK(secp256k1_memcmp_var(&signature[0], &signature[4], sizeof(signature[0])) == 0); | |
| CHECK(secp256k1_memcmp_var(&signature[0], &signature[1], sizeof(signature[0])) != 0); | |
| CHECK(secp256k1_memcmp_var(&signature[0], &signature[2], sizeof(signature[0])) != 0); | |
| CHECK(secp256k1_memcmp_var(&signature[0], &signature[3], sizeof(signature[0])) != 0); | |
| CHECK(secp256k1_memcmp_var(&signature[1], &signature[2], sizeof(signature[0])) != 0); | |
| CHECK(secp256k1_memcmp_var(&signature[1], &signature[3], sizeof(signature[0])) != 0); | |
| CHECK(secp256k1_memcmp_var(&signature[2], &signature[3], sizeof(signature[0])) != 0); | |
| /* Verify. */ | |
| CHECK(secp256k1_ecdsa_verify(CTX, &signature[0], message, &pubkey) == 1); | |
| CHECK(secp256k1_ecdsa_verify(CTX, &signature[1], message, &pubkey) == 1); | |
| CHECK(secp256k1_ecdsa_verify(CTX, &signature[2], message, &pubkey) == 1); | |
| CHECK(secp256k1_ecdsa_verify(CTX, &signature[3], message, &pubkey) == 1); | |
| /* Test lower-S form, malleate, verify and fail, test again, malleate again */ | |
| CHECK(!secp256k1_ecdsa_signature_normalize(CTX, NULL, &signature[0])); | |
| secp256k1_ecdsa_signature_load(CTX, &r, &s, &signature[0]); | |
| secp256k1_scalar_negate(&s, &s); | |
| secp256k1_ecdsa_signature_save(&signature[5], &r, &s); | |
| CHECK(secp256k1_ecdsa_verify(CTX, &signature[5], message, &pubkey) == 0); | |
| CHECK(secp256k1_ecdsa_signature_normalize(CTX, NULL, &signature[5])); | |
| CHECK(secp256k1_ecdsa_signature_normalize(CTX, &signature[5], &signature[5])); | |
| CHECK(!secp256k1_ecdsa_signature_normalize(CTX, NULL, &signature[5])); | |
| CHECK(!secp256k1_ecdsa_signature_normalize(CTX, &signature[5], &signature[5])); | |
| CHECK(secp256k1_ecdsa_verify(CTX, &signature[5], message, &pubkey) == 1); | |
| secp256k1_scalar_negate(&s, &s); | |
| secp256k1_ecdsa_signature_save(&signature[5], &r, &s); | |
| CHECK(!secp256k1_ecdsa_signature_normalize(CTX, NULL, &signature[5])); | |
| CHECK(secp256k1_ecdsa_verify(CTX, &signature[5], message, &pubkey) == 1); | |
| CHECK(secp256k1_memcmp_var(&signature[5], &signature[0], 64) == 0); | |
| | |
| /* Serialize/parse DER and verify again */ | |
| CHECK(secp256k1_ecdsa_signature_serialize_der(CTX, sig, &siglen, &signature[0]) == 1); | |
| memset(&signature[0], 0, sizeof(signature[0])); | |
| CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &signature[0], sig, siglen) == 1); | |
| CHECK(secp256k1_ecdsa_verify(CTX, &signature[0], message, &pubkey) == 1); | |
| /* Serialize/destroy/parse DER and verify again. */ | |
| siglen = 74; | |
| CHECK(secp256k1_ecdsa_signature_serialize_der(CTX, sig, &siglen, &signature[0]) == 1); | |
| sig[testrand_int(siglen)] += 1 + testrand_int(255); | |
| CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &signature[0], sig, siglen) == 0 || | |
| secp256k1_ecdsa_verify(CTX, &signature[0], message, &pubkey) == 0); | |
| } | |
| | |
| static void test_random_pubkeys(void) { | |
| secp256k1_ge elem; | |
| secp256k1_ge elem2; | |
| unsigned char in[65]; | |
| /* Generate some randomly sized pubkeys. */ | |
| size_t len = testrand_bits(2) == 0 ? 65 : 33; | |
| if (testrand_bits(2) == 0) { | |
| len = testrand_bits(6); | |
| } | |
| if (len == 65) { | |
| in[0] = testrand_bits(1) ? 4 : (testrand_bits(1) ? 6 : 7); | |
| } else { | |
| in[0] = testrand_bits(1) ? 2 : 3; | |
| } | |
| if (testrand_bits(3) == 0) { | |
| in[0] = testrand_bits(8); | |
| } | |
| if (len > 1) { | |
| testrand256(&in[1]); | |
| } | |
| if (len > 33) { | |
| testrand256(&in[33]); | |
| } | |
| if (secp256k1_eckey_pubkey_parse(&elem, in, len)) { | |
| unsigned char out[65]; | |
| unsigned char firstb; | |
| int res; | |
| size_t size = len; | |
| firstb = in[0]; | |
| /* If the pubkey can be parsed, it should round-trip... */ | |
| CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33)); | |
| CHECK(size == len); | |
| CHECK(secp256k1_memcmp_var(&in[1], &out[1], len-1) == 0); | |
| /* ... except for the type of hybrid inputs. */ | |
| if ((in[0] != 6) && (in[0] != 7)) { | |
| CHECK(in[0] == out[0]); | |
| } | |
| size = 65; | |
| CHECK(secp256k1_eckey_pubkey_serialize(&elem, in, &size, 0)); | |
| CHECK(size == 65); | |
| CHECK(secp256k1_eckey_pubkey_parse(&elem2, in, size)); | |
| CHECK(secp256k1_ge_eq_var(&elem2, &elem)); | |
| /* Check that the X9.62 hybrid type is checked. */ | |
| in[0] = testrand_bits(1) ? 6 : 7; | |
| res = secp256k1_eckey_pubkey_parse(&elem2, in, size); | |
| if (firstb == 2 || firstb == 3) { | |
| if (in[0] == firstb + 4) { | |
| CHECK(res); | |
| } else { | |
| CHECK(!res); | |
| } | |
| } | |
| if (res) { | |
| CHECK(secp256k1_ge_eq_var(&elem, &elem2)); | |
| CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, 0)); | |
| CHECK(secp256k1_memcmp_var(&in[1], &out[1], 64) == 0); | |
| } | |
| } | |
| } | |
| | |
| static void run_pubkey_comparison(void) { | |
| unsigned char pk1_ser[33] = { | |
| 0x02, | |
| 0x58, 0x84, 0xb3, 0xa2, 0x4b, 0x97, 0x37, 0x88, 0x92, 0x38, 0xa6, 0x26, 0x62, 0x52, 0x35, 0x11, | |
| 0xd0, 0x9a, 0xa1, 0x1b, 0x80, 0x0b, 0x5e, 0x93, 0x80, 0x26, 0x11, 0xef, 0x67, 0x4b, 0xd9, 0x23 | |
| }; | |
| const unsigned char pk2_ser[33] = { | |
| 0x02, | |
| 0xde, 0x36, 0x0e, 0x87, 0x59, 0x8f, 0x3c, 0x01, 0x36, 0x2a, 0x2a, 0xb8, 0xc6, 0xf4, 0x5e, 0x4d, | |
| 0xb2, 0xc2, 0xd5, 0x03, 0xa7, 0xf9, 0xf1, 0x4f, 0xa8, 0xfa, 0x95, 0xa8, 0xe9, 0x69, 0x76, 0x1c | |
| }; | |
| secp256k1_pubkey pk1; | |
| secp256k1_pubkey pk2; | |
| | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pk1, pk1_ser, sizeof(pk1_ser)) == 1); | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pk2, pk2_ser, sizeof(pk2_ser)) == 1); | |
| | |
| CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_ec_pubkey_cmp(CTX, NULL, &pk2) < 0)); | |
| CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk1, NULL) > 0)); | |
| CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk1, &pk2) < 0); | |
| CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk2, &pk1) > 0); | |
| CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk1, &pk1) == 0); | |
| CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk2, &pk2) == 0); | |
| { | |
| secp256k1_pubkey pk_tmp; | |
| memset(&pk_tmp, 0, sizeof(pk_tmp)); /* illegal pubkey */ | |
| CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk_tmp, &pk2) < 0)); | |
| { | |
| int32_t ecount = 0; | |
| secp256k1_context_set_illegal_callback(CTX, counting_callback_fn, &ecount); | |
| CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk_tmp, &pk_tmp) == 0); | |
| CHECK(ecount == 2); | |
| secp256k1_context_set_illegal_callback(CTX, NULL, NULL); | |
| } | |
| CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk2, &pk_tmp) > 0)); | |
| } | |
| | |
| /* Make pk2 the same as pk1 but with 3 rather than 2. Note that in | |
| * an uncompressed encoding, these would have the opposite ordering */ | |
| pk1_ser[0] = 3; | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pk2, pk1_ser, sizeof(pk1_ser)) == 1); | |
| CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk1, &pk2) < 0); | |
| CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk2, &pk1) > 0); | |
| } | |
| | |
| static void test_sort_helper(secp256k1_pubkey *pk, size_t *pk_order, size_t n_pk) { | |
| size_t i; | |
| const secp256k1_pubkey *pk_test[5]; | |
| | |
| for (i = 0; i < n_pk; i++) { | |
| pk_test[i] = &pk[pk_order[i]]; | |
| } | |
| secp256k1_ec_pubkey_sort(CTX, pk_test, n_pk); | |
| for (i = 0; i < n_pk; i++) { | |
| CHECK(secp256k1_memcmp_var(pk_test[i], &pk[i], sizeof(*pk_test[i])) == 0); | |
| } | |
| } | |
| | |
| static void permute(size_t *arr, size_t n) { | |
| size_t i; | |
| for (i = n - 1; i >= 1; i--) { | |
| size_t tmp, j; | |
| j = testrand_int(i + 1); | |
| tmp = arr[i]; | |
| arr[i] = arr[j]; | |
| arr[j] = tmp; | |
| } | |
| } | |
| | |
| static void test_sort_api(void) { | |
| secp256k1_pubkey pks[2]; | |
| const secp256k1_pubkey *pks_ptr[2]; | |
| | |
| pks_ptr[0] = &pks[0]; | |
| pks_ptr[1] = &pks[1]; | |
| | |
| testutil_random_pubkey_test(&pks[0]); | |
| testutil_random_pubkey_test(&pks[1]); | |
| | |
| CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, 2) == 1); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_sort(CTX, NULL, 2)); | |
| CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, 0) == 1); | |
| /* Test illegal public keys */ | |
| memset(&pks[0], 0, sizeof(pks[0])); | |
| CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, 2) == 1)); | |
| memset(&pks[1], 0, sizeof(pks[1])); | |
| { | |
| int32_t ecount = 0; | |
| secp256k1_context_set_illegal_callback(CTX, counting_callback_fn, &ecount); | |
| CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, 2) == 1); | |
| CHECK(ecount == 2); | |
| secp256k1_context_set_illegal_callback(CTX, NULL, NULL); | |
| } | |
| } | |
| | |
| static void test_sort(void) { | |
| secp256k1_pubkey pk[5]; | |
| unsigned char pk_ser[5][33] = { | |
| { 0x02, 0x08 }, | |
| { 0x02, 0x0b }, | |
| { 0x02, 0x0c }, | |
| { 0x03, 0x05 }, | |
| { 0x03, 0x0a }, | |
| }; | |
| int i; | |
| size_t pk_order[5] = { 0, 1, 2, 3, 4 }; | |
| | |
| for (i = 0; i < 5; i++) { | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pk[i], pk_ser[i], sizeof(pk_ser[i]))); | |
| } | |
| | |
| permute(pk_order, 1); | |
| test_sort_helper(pk, pk_order, 1); | |
| permute(pk_order, 2); | |
| test_sort_helper(pk, pk_order, 2); | |
| permute(pk_order, 3); | |
| test_sort_helper(pk, pk_order, 3); | |
| for (i = 0; i < COUNT; i++) { | |
| permute(pk_order, 4); | |
| test_sort_helper(pk, pk_order, 4); | |
| } | |
| for (i = 0; i < COUNT; i++) { | |
| permute(pk_order, 5); | |
| test_sort_helper(pk, pk_order, 5); | |
| } | |
| /* Check that sorting also works for random pubkeys */ | |
| for (i = 0; i < COUNT; i++) { | |
| int j; | |
| const secp256k1_pubkey *pk_ptr[5]; | |
| for (j = 0; j < 5; j++) { | |
| testutil_random_pubkey_test(&pk[j]); | |
| pk_ptr[j] = &pk[j]; | |
| } | |
| secp256k1_ec_pubkey_sort(CTX, pk_ptr, 5); | |
| for (j = 1; j < 5; j++) { | |
| CHECK(secp256k1_ec_pubkey_sort_cmp(&pk_ptr[j - 1], &pk_ptr[j], CTX) <= 0); | |
| } | |
| } | |
| } | |
| | |
| /* Test vectors from BIP-MuSig2 */ | |
| static void test_sort_vectors(void) { | |
| enum { N_PUBKEYS = 6 }; | |
| unsigned char pk_ser[N_PUBKEYS][33] = { | |
| { 0x02, 0xDD, 0x30, 0x8A, 0xFE, 0xC5, 0x77, 0x7E, 0x13, 0x12, 0x1F, | |
| 0xA7, 0x2B, 0x9C, 0xC1, 0xB7, 0xCC, 0x01, 0x39, 0x71, 0x53, 0x09, | |
| 0xB0, 0x86, 0xC9, 0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xB8 }, | |
| { 0x02, 0xF9, 0x30, 0x8A, 0x01, 0x92, 0x58, 0xC3, 0x10, 0x49, 0x34, | |
| 0x4F, 0x85, 0xF8, 0x9D, 0x52, 0x29, 0xB5, 0x31, 0xC8, 0x45, 0x83, | |
| 0x6F, 0x99, 0xB0, 0x86, 0x01, 0xF1, 0x13, 0xBC, 0xE0, 0x36, 0xF9 }, | |
| { 0x03, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, 0x36, 0x18, | |
| 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, | |
| 0xDE, 0xCE, 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 }, | |
| { 0x02, 0x35, 0x90, 0xA9, 0x4E, 0x76, 0x8F, 0x8E, 0x18, 0x15, 0xC2, | |
| 0xF2, 0x4B, 0x4D, 0x80, 0xA8, 0xE3, 0x14, 0x93, 0x16, 0xC3, 0x51, | |
| 0x8C, 0xE7, 0xB7, 0xAD, 0x33, 0x83, 0x68, 0xD0, 0x38, 0xCA, 0x66 }, | |
| { 0x02, 0xDD, 0x30, 0x8A, 0xFE, 0xC5, 0x77, 0x7E, 0x13, 0x12, 0x1F, | |
| 0xA7, 0x2B, 0x9C, 0xC1, 0xB7, 0xCC, 0x01, 0x39, 0x71, 0x53, 0x09, | |
| 0xB0, 0x86, 0xC9, 0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xFF }, | |
| { 0x02, 0xDD, 0x30, 0x8A, 0xFE, 0xC5, 0x77, 0x7E, 0x13, 0x12, 0x1F, | |
| 0xA7, 0x2B, 0x9C, 0xC1, 0xB7, 0xCC, 0x01, 0x39, 0x71, 0x53, 0x09, | |
| 0xB0, 0x86, 0xC9, 0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xB8 } | |
| }; | |
| secp256k1_pubkey pubkeys[N_PUBKEYS]; | |
| secp256k1_pubkey *sorted[N_PUBKEYS]; | |
| const secp256k1_pubkey *pks_ptr[N_PUBKEYS]; | |
| int i; | |
| | |
| sorted[0] = &pubkeys[3]; | |
| sorted[1] = &pubkeys[0]; | |
| sorted[2] = &pubkeys[0]; | |
| sorted[3] = &pubkeys[4]; | |
| sorted[4] = &pubkeys[1]; | |
| sorted[5] = &pubkeys[2]; | |
| | |
| for (i = 0; i < N_PUBKEYS; i++) { | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkeys[i], pk_ser[i], sizeof(pk_ser[i]))); | |
| pks_ptr[i] = &pubkeys[i]; | |
| } | |
| CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, N_PUBKEYS) == 1); | |
| for (i = 0; i < N_PUBKEYS; i++) { | |
| CHECK(secp256k1_memcmp_var(pks_ptr[i], sorted[i], sizeof(secp256k1_pubkey)) == 0); | |
| } | |
| } | |
| | |
| static void run_pubkey_sort(void) { | |
| test_sort_api(); | |
| test_sort(); | |
| test_sort_vectors(); | |
| } | |
| | |
| | |
| static void run_random_pubkeys(void) { | |
| int i; | |
| for (i = 0; i < 10*COUNT; i++) { | |
| test_random_pubkeys(); | |
| } | |
| } | |
| | |
| static void run_ecdsa_end_to_end(void) { | |
| int i; | |
| for (i = 0; i < 64*COUNT; i++) { | |
| test_ecdsa_end_to_end(); | |
| } | |
| } | |
| | |
| static int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_der, int certainly_not_der) { | |
| static const unsigned char zeroes[32] = {0}; | |
| | |
| int ret = 0; | |
| | |
| secp256k1_ecdsa_signature sig_der; | |
| unsigned char roundtrip_der[2048]; | |
| unsigned char compact_der[64]; | |
| size_t len_der = 2048; | |
| int parsed_der = 0, valid_der = 0, roundtrips_der = 0; | |
| | |
| secp256k1_ecdsa_signature sig_der_lax; | |
| unsigned char roundtrip_der_lax[2048]; | |
| unsigned char compact_der_lax[64]; | |
| size_t len_der_lax = 2048; | |
| int parsed_der_lax = 0, valid_der_lax = 0, roundtrips_der_lax = 0; | |
| | |
| parsed_der = secp256k1_ecdsa_signature_parse_der(CTX, &sig_der, sig, siglen); | |
| if (parsed_der) { | |
| ret |= (!secp256k1_ecdsa_signature_serialize_compact(CTX, compact_der, &sig_der)) << 0; | |
| valid_der = (secp256k1_memcmp_var(compact_der, zeroes, 32) != 0) && (secp256k1_memcmp_var(compact_der + 32, zeroes, 32) != 0); | |
| } | |
| if (valid_der) { | |
| ret |= (!secp256k1_ecdsa_signature_serialize_der(CTX, roundtrip_der, &len_der, &sig_der)) << 1; | |
| roundtrips_der = (len_der == siglen) && secp256k1_memcmp_var(roundtrip_der, sig, siglen) == 0; | |
| } | |
| | |
| parsed_der_lax = ecdsa_signature_parse_der_lax(CTX, &sig_der_lax, sig, siglen); | |
| if (parsed_der_lax) { | |
| ret |= (!secp256k1_ecdsa_signature_serialize_compact(CTX, compact_der_lax, &sig_der_lax)) << 10; | |
| valid_der_lax = (secp256k1_memcmp_var(compact_der_lax, zeroes, 32) != 0) && (secp256k1_memcmp_var(compact_der_lax + 32, zeroes, 32) != 0); | |
| } | |
| if (valid_der_lax) { | |
| ret |= (!secp256k1_ecdsa_signature_serialize_der(CTX, roundtrip_der_lax, &len_der_lax, &sig_der_lax)) << 11; | |
| roundtrips_der_lax = (len_der_lax == siglen) && secp256k1_memcmp_var(roundtrip_der_lax, sig, siglen) == 0; | |
| } | |
| | |
| if (certainly_der) { | |
| ret |= (!parsed_der) << 2; | |
| } | |
| if (certainly_not_der) { | |
| ret |= (parsed_der) << 17; | |
| } | |
| if (valid_der) { | |
| ret |= (!roundtrips_der) << 3; | |
| } | |
| | |
| if (valid_der) { | |
| ret |= (!roundtrips_der_lax) << 12; | |
| ret |= (len_der != len_der_lax) << 13; | |
| ret |= ((len_der != len_der_lax) || (secp256k1_memcmp_var(roundtrip_der_lax, roundtrip_der, len_der) != 0)) << 14; | |
| } | |
| ret |= (roundtrips_der != roundtrips_der_lax) << 15; | |
| if (parsed_der) { | |
| ret |= (!parsed_der_lax) << 16; | |
| } | |
| | |
| return ret; | |
| } | |
| | |
| static void assign_big_endian(unsigned char *ptr, size_t ptrlen, uint32_t val) { | |
| size_t i; | |
| for (i = 0; i < ptrlen; i++) { | |
| int shift = ptrlen - 1 - i; | |
| if (shift >= 4) { | |
| ptr[i] = 0; | |
| } else { | |
| ptr[i] = (val >> shift) & 0xFF; | |
| } | |
| } | |
| } | |
| | |
| static void damage_array(unsigned char *sig, size_t *len) { | |
| int pos; | |
| int action = testrand_bits(3); | |
| if (action < 1 && *len > 3) { | |
| /* Delete a byte. */ | |
| pos = testrand_int(*len); | |
| memmove(sig + pos, sig + pos + 1, *len - pos - 1); | |
| (*len)--; | |
| return; | |
| } else if (action < 2 && *len < 2048) { | |
| /* Insert a byte. */ | |
| pos = testrand_int(1 + *len); | |
| memmove(sig + pos + 1, sig + pos, *len - pos); | |
| sig[pos] = testrand_bits(8); | |
| (*len)++; | |
| return; | |
| } else if (action < 4) { | |
| /* Modify a byte. */ | |
| sig[testrand_int(*len)] += 1 + testrand_int(255); | |
| return; | |
| } else { /* action < 8 */ | |
| /* Modify a bit. */ | |
| sig[testrand_int(*len)] ^= 1 << testrand_bits(3); | |
| return; | |
| } | |
| } | |
| | |
| static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly_der, int* certainly_not_der) { | |
| int der; | |
| int nlow[2], nlen[2], nlenlen[2], nhbit[2], nhbyte[2], nzlen[2]; | |
| size_t tlen, elen, glen; | |
| int indet; | |
| int n; | |
| | |
| *len = 0; | |
| der = testrand_bits(2) == 0; | |
| *certainly_der = der; | |
| *certainly_not_der = 0; | |
| indet = der ? 0 : testrand_int(10) == 0; | |
| | |
| for (n = 0; n < 2; n++) { | |
| /* We generate two classes of numbers: nlow==1 "low" ones (up to 32 bytes), nlow==0 "high" ones (32 bytes with 129 top bits set, or larger than 32 bytes) */ | |
| nlow[n] = der ? 1 : (testrand_bits(3) != 0); | |
| /* The length of the number in bytes (the first byte of which will always be nonzero) */ | |
| nlen[n] = nlow[n] ? testrand_int(33) : 32 + testrand_int(200) * testrand_bits(3) / 8; | |
| CHECK(nlen[n] <= 232); | |
| /* The top bit of the number. */ | |
| nhbit[n] = (nlow[n] == 0 && nlen[n] == 32) ? 1 : (nlen[n] == 0 ? 0 : testrand_bits(1)); | |
| /* The top byte of the number (after the potential hardcoded 16 0xFF characters for "high" 32 bytes numbers) */ | |
| nhbyte[n] = nlen[n] == 0 ? 0 : (nhbit[n] ? 128 + testrand_bits(7) : 1 + testrand_int(127)); | |
| /* The number of zero bytes in front of the number (which is 0 or 1 in case of DER, otherwise we extend up to 300 bytes) */ | |
| nzlen[n] = der ? ((nlen[n] == 0 || nhbit[n]) ? 1 : 0) : (nlow[n] ? testrand_int(3) : testrand_int(300 - nlen[n]) * testrand_bits(3) / 8); | |
| if (nzlen[n] > ((nlen[n] == 0 || nhbit[n]) ? 1 : 0)) { | |
| *certainly_not_der = 1; | |
| } | |
| CHECK(nlen[n] + nzlen[n] <= 300); | |
| /* The length of the length descriptor for the number. 0 means short encoding, anything else is long encoding. */ | |
| nlenlen[n] = nlen[n] + nzlen[n] < 128 ? 0 : (nlen[n] + nzlen[n] < 256 ? 1 : 2); | |
| if (!der) { | |
| /* nlenlen[n] max 127 bytes */ | |
| int add = testrand_int(127 - nlenlen[n]) * testrand_bits(4) * testrand_bits(4) / 256; | |
| nlenlen[n] += add; | |
| if (add != 0) { | |
| *certainly_not_der = 1; | |
| } | |
| } | |
| CHECK(nlen[n] + nzlen[n] + nlenlen[n] <= 427); | |
| } | |
| | |
| /* The total length of the data to go, so far */ | |
| tlen = 2 + nlenlen[0] + nlen[0] + nzlen[0] + 2 + nlenlen[1] + nlen[1] + nzlen[1]; | |
| CHECK(tlen <= 856); | |
| | |
| /* The length of the garbage inside the tuple. */ | |
| elen = (der || indet) ? 0 : testrand_int(980 - tlen) * testrand_bits(3) / 8; | |
| if (elen != 0) { | |
| *certainly_not_der = 1; | |
| } | |
| tlen += elen; | |
| CHECK(tlen <= 980); | |
| | |
| /* The length of the garbage after the end of the tuple. */ | |
| glen = der ? 0 : testrand_int(990 - tlen) * testrand_bits(3) / 8; | |
| if (glen != 0) { | |
| *certainly_not_der = 1; | |
| } | |
| CHECK(tlen + glen <= 990); | |
| | |
| /* Write the tuple header. */ | |
| sig[(*len)++] = 0x30; | |
| if (indet) { | |
| /* Indeterminate length */ | |
| sig[(*len)++] = 0x80; | |
| *certainly_not_der = 1; | |
| } else { | |
| int tlenlen = tlen < 128 ? 0 : (tlen < 256 ? 1 : 2); | |
| if (!der) { | |
| int add = testrand_int(127 - tlenlen) * testrand_bits(4) * testrand_bits(4) / 256; | |
| tlenlen += add; | |
| if (add != 0) { | |
| *certainly_not_der = 1; | |
| } | |
| } | |
| if (tlenlen == 0) { | |
| /* Short length notation */ | |
| sig[(*len)++] = tlen; | |
| } else { | |
| /* Long length notation */ | |
| sig[(*len)++] = 128 + tlenlen; | |
| assign_big_endian(sig + *len, tlenlen, tlen); | |
| *len += tlenlen; | |
| } | |
| tlen += tlenlen; | |
| } | |
| tlen += 2; | |
| CHECK(tlen + glen <= 1119); | |
| | |
| for (n = 0; n < 2; n++) { | |
| /* Write the integer header. */ | |
| sig[(*len)++] = 0x02; | |
| if (nlenlen[n] == 0) { | |
| /* Short length notation */ | |
| sig[(*len)++] = nlen[n] + nzlen[n]; | |
| } else { | |
| /* Long length notation. */ | |
| sig[(*len)++] = 128 + nlenlen[n]; | |
| assign_big_endian(sig + *len, nlenlen[n], nlen[n] + nzlen[n]); | |
| *len += nlenlen[n]; | |
| } | |
| /* Write zero padding */ | |
| while (nzlen[n] > 0) { | |
| sig[(*len)++] = 0x00; | |
| nzlen[n]--; | |
| } | |
| if (nlen[n] == 32 && !nlow[n]) { | |
| /* Special extra 16 0xFF bytes in "high" 32-byte numbers */ | |
| int i; | |
| for (i = 0; i < 16; i++) { | |
| sig[(*len)++] = 0xFF; | |
| } | |
| nlen[n] -= 16; | |
| } | |
| /* Write first byte of number */ | |
| if (nlen[n] > 0) { | |
| sig[(*len)++] = nhbyte[n]; | |
| nlen[n]--; | |
| } | |
| /* Generate remaining random bytes of number */ | |
| testrand_bytes_test(sig + *len, nlen[n]); | |
| *len += nlen[n]; | |
| nlen[n] = 0; | |
| } | |
| | |
| /* Generate random garbage inside tuple. */ | |
| testrand_bytes_test(sig + *len, elen); | |
| *len += elen; | |
| | |
| /* Generate end-of-contents bytes. */ | |
| if (indet) { | |
| sig[(*len)++] = 0; | |
| sig[(*len)++] = 0; | |
| tlen += 2; | |
| } | |
| CHECK(tlen + glen <= 1121); | |
| | |
| /* Generate random garbage outside tuple. */ | |
| testrand_bytes_test(sig + *len, glen); | |
| *len += glen; | |
| tlen += glen; | |
| CHECK(tlen <= 1121); | |
| CHECK(tlen == *len); | |
| } | |
| | |
| static void run_ecdsa_der_parse(void) { | |
| int i,j; | |
| for (i = 0; i < 200 * COUNT; i++) { | |
| unsigned char buffer[2048]; | |
| size_t buflen = 0; | |
| int certainly_der = 0; | |
| int certainly_not_der = 0; | |
| random_ber_signature(buffer, &buflen, &certainly_der, &certainly_not_der); | |
| CHECK(buflen <= 2048); | |
| for (j = 0; j < 16; j++) { | |
| int ret = 0; | |
| if (j > 0) { | |
| damage_array(buffer, &buflen); | |
| /* We don't know anything anymore about the DERness of the result */ | |
| certainly_der = 0; | |
| certainly_not_der = 0; | |
| } | |
| ret = test_ecdsa_der_parse(buffer, buflen, certainly_der, certainly_not_der); | |
| if (ret != 0) { | |
| size_t k; | |
| fprintf(stderr, "Failure %x on ", ret); | |
| for (k = 0; k < buflen; k++) { | |
| fprintf(stderr, "%02x ", buffer[k]); | |
| } | |
| fprintf(stderr, "\n"); | |
| } | |
| CHECK(ret == 0); | |
| } | |
| } | |
| } | |
| | |
| /* Tests several edge cases. */ | |
| static void test_ecdsa_edge_cases(void) { | |
| int t; | |
| secp256k1_ecdsa_signature sig; | |
| | |
| /* Test the case where ECDSA recomputes a point that is infinity. */ | |
| { | |
| secp256k1_gej keyj; | |
| secp256k1_ge key; | |
| secp256k1_scalar msg; | |
| secp256k1_scalar sr, ss; | |
| secp256k1_scalar_set_int(&ss, 1); | |
| secp256k1_scalar_negate(&ss, &ss); | |
| secp256k1_scalar_inverse(&ss, &ss); | |
| secp256k1_scalar_set_int(&sr, 1); | |
| secp256k1_ecmult_gen(&CTX->ecmult_gen_ctx, &keyj, &sr); | |
| secp256k1_ge_set_gej(&key, &keyj); | |
| msg = ss; | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 0); | |
| Calling 'secp256k1_ecdsa_sig_verify' | |
| } | |
| | |
| /* Verify signature with r of zero fails. */ | |
| { | |
| const unsigned char pubkey_mods_zero[33] = { | |
| 0x02, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xfe, 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, | |
| 0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, | |
| 0x41 | |
| }; | |
| secp256k1_ge key; | |
| secp256k1_scalar msg; | |
| secp256k1_scalar sr, ss; | |
| secp256k1_scalar_set_int(&ss, 1); | |
| secp256k1_scalar_set_int(&msg, 0); | |
| secp256k1_scalar_set_int(&sr, 0); | |
| CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey_mods_zero, 33)); | |
| CHECK(secp256k1_ecdsa_sig_verify( &sr, &ss, &key, &msg) == 0); | |
| } | |
| | |
| /* Verify signature with s of zero fails. */ | |
| { | |
| const unsigned char pubkey[33] = { | |
| 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x01 | |
| }; | |
| secp256k1_ge key; | |
| secp256k1_scalar msg; | |
| secp256k1_scalar sr, ss; | |
| secp256k1_scalar_set_int(&ss, 0); | |
| secp256k1_scalar_set_int(&msg, 0); | |
| secp256k1_scalar_set_int(&sr, 1); | |
| CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33)); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 0); | |
| } | |
| | |
| /* Verify signature with message 0 passes. */ | |
| { | |
| const unsigned char pubkey[33] = { | |
| 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x02 | |
| }; | |
| const unsigned char pubkey2[33] = { | |
| 0x02, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | |
| 0xfe, 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, | |
| 0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, | |
| 0x43 | |
| }; | |
| secp256k1_ge key; | |
| secp256k1_ge key2; | |
| secp256k1_scalar msg; | |
| secp256k1_scalar sr, ss; | |
| secp256k1_scalar_set_int(&ss, 2); | |
| secp256k1_scalar_set_int(&msg, 0); | |
| secp256k1_scalar_set_int(&sr, 2); | |
| CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33)); | |
| CHECK(secp256k1_eckey_pubkey_parse(&key2, pubkey2, 33)); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 1); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key2, &msg) == 1); | |
| secp256k1_scalar_negate(&ss, &ss); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 1); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key2, &msg) == 1); | |
| secp256k1_scalar_set_int(&ss, 1); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 0); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key2, &msg) == 0); | |
| } | |
| | |
| /* Verify signature with message 1 passes. */ | |
| { | |
| const unsigned char pubkey[33] = { | |
| 0x02, 0x14, 0x4e, 0x5a, 0x58, 0xef, 0x5b, 0x22, | |
| 0x6f, 0xd2, 0xe2, 0x07, 0x6a, 0x77, 0xcf, 0x05, | |
| 0xb4, 0x1d, 0xe7, 0x4a, 0x30, 0x98, 0x27, 0x8c, | |
| 0x93, 0xe6, 0xe6, 0x3c, 0x0b, 0xc4, 0x73, 0x76, | |
| 0x25 | |
| }; | |
| const unsigned char pubkey2[33] = { | |
| 0x02, 0x8a, 0xd5, 0x37, 0xed, 0x73, 0xd9, 0x40, | |
| 0x1d, 0xa0, 0x33, 0xd2, 0xdc, 0xf0, 0xaf, 0xae, | |
| 0x34, 0xcf, 0x5f, 0x96, 0x4c, 0x73, 0x28, 0x0f, | |
| 0x92, 0xc0, 0xf6, 0x9d, 0xd9, 0xb2, 0x09, 0x10, | |
| 0x62 | |
| }; | |
| const unsigned char csr[32] = { | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| 0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4, | |
| 0x40, 0x2d, 0xa1, 0x72, 0x2f, 0xc9, 0xba, 0xeb | |
| }; | |
| secp256k1_ge key; | |
| secp256k1_ge key2; | |
| secp256k1_scalar msg; | |
| secp256k1_scalar sr, ss; | |
| secp256k1_scalar_set_int(&ss, 1); | |
| secp256k1_scalar_set_int(&msg, 1); | |
| secp256k1_scalar_set_b32(&sr, csr, NULL); | |
| CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33)); | |
| CHECK(secp256k1_eckey_pubkey_parse(&key2, pubkey2, 33)); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 1); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key2, &msg) == 1); | |
| secp256k1_scalar_negate(&ss, &ss); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 1); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key2, &msg) == 1); | |
| secp256k1_scalar_set_int(&ss, 2); | |
| secp256k1_scalar_inverse_var(&ss, &ss); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 0); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key2, &msg) == 0); | |
| } | |
| | |
| /* Verify signature with message -1 passes. */ | |
| { | |
| const unsigned char pubkey[33] = { | |
| 0x03, 0xaf, 0x97, 0xff, 0x7d, 0x3a, 0xf6, 0xa0, | |
| 0x02, 0x94, 0xbd, 0x9f, 0x4b, 0x2e, 0xd7, 0x52, | |
| 0x28, 0xdb, 0x49, 0x2a, 0x65, 0xcb, 0x1e, 0x27, | |
| 0x57, 0x9c, 0xba, 0x74, 0x20, 0xd5, 0x1d, 0x20, | |
| 0xf1 | |
| }; | |
| const unsigned char csr[32] = { | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| 0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4, | |
| 0x40, 0x2d, 0xa1, 0x72, 0x2f, 0xc9, 0xba, 0xee | |
| }; | |
| secp256k1_ge key; | |
| secp256k1_scalar msg; | |
| secp256k1_scalar sr, ss; | |
| secp256k1_scalar_set_int(&ss, 1); | |
| secp256k1_scalar_set_int(&msg, 1); | |
| secp256k1_scalar_negate(&msg, &msg); | |
| secp256k1_scalar_set_b32(&sr, csr, NULL); | |
| CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33)); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 1); | |
| secp256k1_scalar_negate(&ss, &ss); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 1); | |
| secp256k1_scalar_set_int(&ss, 3); | |
| secp256k1_scalar_inverse_var(&ss, &ss); | |
| CHECK(secp256k1_ecdsa_sig_verify(&sr, &ss, &key, &msg) == 0); | |
| } | |
| | |
| /* Signature where s would be zero. */ | |
| { | |
| secp256k1_pubkey pubkey; | |
| size_t siglen; | |
| unsigned char signature[72]; | |
| static const unsigned char nonce[32] = { | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| }; | |
| static const unsigned char nonce2[32] = { | |
| 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
| 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, | |
| 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, | |
| 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40 | |
| }; | |
| const unsigned char key[32] = { | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | |
| }; | |
| unsigned char msg[32] = { | |
| 0x86, 0x41, 0x99, 0x81, 0x06, 0x23, 0x44, 0x53, | |
| 0xaa, 0x5f, 0x9d, 0x6a, 0x31, 0x78, 0xf4, 0xf7, | |
| 0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62, | |
| 0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9, | |
| }; | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig, msg, key, precomputed_nonce_function, nonce) == 0); | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig, msg, key, precomputed_nonce_function, nonce2) == 0); | |
| msg[31] = 0xaa; | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig, msg, key, precomputed_nonce_function, nonce) == 1); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_sign(CTX, NULL, msg, key, precomputed_nonce_function, nonce2)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_sign(CTX, &sig, NULL, key, precomputed_nonce_function, nonce2)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_sign(CTX, &sig, msg, NULL, precomputed_nonce_function, nonce2)); | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig, msg, key, precomputed_nonce_function, nonce2) == 1); | |
| CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, key) == 1); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_verify(CTX, NULL, msg, &pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_verify(CTX, &sig, NULL, &pubkey)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_verify(CTX, &sig, msg, NULL)); | |
| CHECK(secp256k1_ecdsa_verify(CTX, &sig, msg, &pubkey) == 1); | |
| CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_create(CTX, &pubkey, NULL)); | |
| /* That pubkeyload fails via an ARGCHECK is a little odd but makes sense because pubkeys are an opaque data type. */ | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_verify(CTX, &sig, msg, &pubkey)); | |
| siglen = 72; | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_serialize_der(CTX, NULL, &siglen, &sig)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_serialize_der(CTX, signature, NULL, &sig)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_serialize_der(CTX, signature, &siglen, NULL)); | |
| CHECK(secp256k1_ecdsa_signature_serialize_der(CTX, signature, &siglen, &sig) == 1); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_parse_der(CTX, NULL, signature, siglen)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_parse_der(CTX, &sig, NULL, siglen)); | |
| CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, signature, siglen) == 1); | |
| siglen = 10; | |
| /* Too little room for a signature does not fail via ARGCHECK. */ | |
| CHECK(secp256k1_ecdsa_signature_serialize_der(CTX, signature, &siglen, &sig) == 0); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_normalize(CTX, NULL, NULL)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_serialize_compact(CTX, NULL, &sig)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_serialize_compact(CTX, signature, NULL)); | |
| CHECK(secp256k1_ecdsa_signature_serialize_compact(CTX, signature, &sig) == 1); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_parse_compact(CTX, NULL, signature)); | |
| CHECK_ILLEGAL(CTX, secp256k1_ecdsa_signature_parse_compact(CTX, &sig, NULL)); | |
| CHECK(secp256k1_ecdsa_signature_parse_compact(CTX, &sig, signature) == 1); | |
| memset(signature, 255, 64); | |
| CHECK(secp256k1_ecdsa_signature_parse_compact(CTX, &sig, signature) == 0); | |
| } | |
| | |
| /* Nonce function corner cases. */ | |
| for (t = 0; t < 2; t++) { | |
| static const unsigned char zero[32] = {0x00}; | |
| int i; | |
| unsigned char key[32]; | |
| unsigned char msg[32]; | |
| secp256k1_ecdsa_signature sig2; | |
| secp256k1_scalar sr[512], ss; | |
| const unsigned char *extra; | |
| extra = t == 0 ? NULL : zero; | |
| memset(msg, 0, 32); | |
| msg[31] = 1; | |
| /* High key results in signature failure. */ | |
| memset(key, 0xFF, 32); | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig, msg, key, NULL, extra) == 0); | |
| CHECK(is_empty_signature(&sig)); | |
| /* Zero key results in signature failure. */ | |
| memset(key, 0, 32); | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig, msg, key, NULL, extra) == 0); | |
| CHECK(is_empty_signature(&sig)); | |
| /* Nonce function failure results in signature failure. */ | |
| key[31] = 1; | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig, msg, key, nonce_function_test_fail, extra) == 0); | |
| CHECK(is_empty_signature(&sig)); | |
| /* The retry loop successfully makes its way to the first good value. */ | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig, msg, key, nonce_function_test_retry, extra) == 1); | |
| CHECK(!is_empty_signature(&sig)); | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig2, msg, key, nonce_function_rfc6979, extra) == 1); | |
| CHECK(!is_empty_signature(&sig2)); | |
| CHECK(secp256k1_memcmp_var(&sig, &sig2, sizeof(sig)) == 0); | |
| /* The default nonce function is deterministic. */ | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig2, msg, key, NULL, extra) == 1); | |
| CHECK(!is_empty_signature(&sig2)); | |
| CHECK(secp256k1_memcmp_var(&sig, &sig2, sizeof(sig)) == 0); | |
| /* The default nonce function changes output with different messages. */ | |
| for(i = 0; i < 256; i++) { | |
| int j; | |
| msg[0] = i; | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig2, msg, key, NULL, extra) == 1); | |
| CHECK(!is_empty_signature(&sig2)); | |
| secp256k1_ecdsa_signature_load(CTX, &sr[i], &ss, &sig2); | |
| for (j = 0; j < i; j++) { | |
| CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j])); | |
| } | |
| } | |
| msg[0] = 0; | |
| msg[31] = 2; | |
| /* The default nonce function changes output with different keys. */ | |
| for(i = 256; i < 512; i++) { | |
| int j; | |
| key[0] = i - 256; | |
| CHECK(secp256k1_ecdsa_sign(CTX, &sig2, msg, key, NULL, extra) == 1); | |
| CHECK(!is_empty_signature(&sig2)); | |
| secp256k1_ecdsa_signature_load(CTX, &sr[i], &ss, &sig2); | |
| for (j = 0; j < i; j++) { | |
| CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j])); | |
| } | |
| } | |
| key[0] = 0; | |
| } | |
| | |
| { | |
| /* Check that optional nonce arguments do not have equivalent effect. */ | |
| const unsigned char zeros[32] = {0}; | |
| unsigned char nonce[32]; | |
| unsigned char nonce2[32]; | |
| unsigned char nonce3[32]; | |
| unsigned char nonce4[32]; | |
| SECP256K1_CHECKMEM_UNDEFINE(nonce,32); | |
| SECP256K1_CHECKMEM_UNDEFINE(nonce2,32); | |
| SECP256K1_CHECKMEM_UNDEFINE(nonce3,32); | |
| SECP256K1_CHECKMEM_UNDEFINE(nonce4,32); | |
| CHECK(nonce_function_rfc6979(nonce, zeros, zeros, NULL, NULL, 0) == 1); | |
| SECP256K1_CHECKMEM_CHECK(nonce,32); | |
| CHECK(nonce_function_rfc6979(nonce2, zeros, zeros, zeros, NULL, 0) == 1); | |
| SECP256K1_CHECKMEM_CHECK(nonce2,32); | |
| CHECK(nonce_function_rfc6979(nonce3, zeros, zeros, NULL, (void *)zeros, 0) == 1); | |
| SECP256K1_CHECKMEM_CHECK(nonce3,32); | |
| CHECK(nonce_function_rfc6979(nonce4, zeros, zeros, zeros, (void *)zeros, 0) == 1); | |
| SECP256K1_CHECKMEM_CHECK(nonce4,32); | |
| CHECK(secp256k1_memcmp_var(nonce, nonce2, 32) != 0); | |
| CHECK(secp256k1_memcmp_var(nonce, nonce3, 32) != 0); | |
| CHECK(secp256k1_memcmp_var(nonce, nonce4, 32) != 0); | |
| CHECK(secp256k1_memcmp_var(nonce2, nonce3, 32) != 0); | |
| CHECK(secp256k1_memcmp_var(nonce2, nonce4, 32) != 0); | |
| CHECK(secp256k1_memcmp_var(nonce3, nonce4, 32) != 0); | |
| } | |
| | |
| | |
| /* Privkey export where pubkey is the point at infinity. */ | |
| { | |
| unsigned char privkey[300]; | |
| const unsigned char *seckey = secp256k1_group_order_bytes; | |
| size_t outlen = 300; | |
| CHECK(!ec_privkey_export_der(CTX, privkey, &outlen, seckey, 0)); | |
| outlen = 300; | |
| CHECK(!ec_privkey_export_der(CTX, privkey, &outlen, seckey, 1)); | |
| } | |
| } | |
| | |
| static void run_ecdsa_edge_cases(void) { | |
| test_ecdsa_edge_cases(); | |
| } | |
| | |
| /** Wycheproof tests | |
| | |
| The tests check for known attacks (range checks in (r,s), arithmetic errors, malleability). | |
| */ | |
| static void test_ecdsa_wycheproof(void) { | |
| #include "wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h" | |
| | |
| int t; | |
| for (t = 0; t < SECP256K1_ECDSA_WYCHEPROOF_NUMBER_TESTVECTORS; t++) { | |
| secp256k1_ecdsa_signature signature; | |
| secp256k1_sha256 hasher; | |
| secp256k1_pubkey pubkey; | |
| const unsigned char *msg, *sig, *pk; | |
| unsigned char out[32] = {0}; | |
| int actual_verify = 0; | |
| | |
| memset(&pubkey, 0, sizeof(pubkey)); | |
| pk = &wycheproof_ecdsa_public_keys[testvectors[t].pk_offset]; | |
| CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkey, pk, 65) == 1); | |
| | |
| secp256k1_sha256_initialize(&hasher); | |
| msg = &wycheproof_ecdsa_messages[testvectors[t].msg_offset]; | |
| secp256k1_sha256_write(&hasher, msg, testvectors[t].msg_len); | |
| secp256k1_sha256_finalize(&hasher, out); | |
| | |
| sig = &wycheproof_ecdsa_signatures[testvectors[t].sig_offset]; | |
| if (secp256k1_ecdsa_signature_parse_der(CTX, &signature, sig, testvectors[t].sig_len) == 1) { | |
| actual_verify = secp256k1_ecdsa_verify(CTX, (const secp256k1_ecdsa_signature *)&signature, out, &pubkey); | |
| } | |
| CHECK(testvectors[t].expected_verify == actual_verify); | |
| } | |
| } | |
| | |
| /* Tests cases from Wycheproof test suite. */ | |
| static void run_ecdsa_wycheproof(void) { | |
| test_ecdsa_wycheproof(); | |
| } | |
| | |
| #ifdef ENABLE_MODULE_ECDH | |
| # include "modules/ecdh/tests_impl.h" | |
| #endif | |
| | |
| #ifdef ENABLE_MODULE_RECOVERY | |
| # include "modules/recovery/tests_impl.h" | |
| #endif | |
| | |
| #ifdef ENABLE_MODULE_EXTRAKEYS | |
| # include "modules/extrakeys/tests_impl.h" | |
| #endif | |
| | |
| #ifdef ENABLE_MODULE_SCHNORRSIG | |
| # include "modules/schnorrsig/tests_impl.h" | |
| #endif | |
| | |
| #ifdef ENABLE_MODULE_MUSIG | |
| # include "modules/musig/tests_impl.h" | |
| #endif | |
| | |
| #ifdef ENABLE_MODULE_ELLSWIFT | |
| # include "modules/ellswift/tests_impl.h" | |
| #endif | |
| | |
| static void run_secp256k1_memczero_test(void) { | |
| unsigned char buf1[6] = {1, 2, 3, 4, 5, 6}; | |
| unsigned char buf2[sizeof(buf1)]; | |
| | |
| /* secp256k1_memczero(..., ..., 0) is a noop. */ | |
| memcpy(buf2, buf1, sizeof(buf1)); | |
| secp256k1_memczero(buf1, sizeof(buf1), 0); | |
| CHECK(secp256k1_memcmp_var(buf1, buf2, sizeof(buf1)) == 0); | |
| | |
| /* secp256k1_memczero(..., ..., 1) zeros the buffer. */ | |
| memset(buf2, 0, sizeof(buf2)); | |
| secp256k1_memczero(buf1, sizeof(buf1) , 1); | |
| CHECK(secp256k1_memcmp_var(buf1, buf2, sizeof(buf1)) == 0); | |
| } | |
| | |
| | |
| static void run_secp256k1_is_zero_array_test(void) { | |
| unsigned char buf1[3] = {0, 1}; | |
| unsigned char buf2[3] = {1, 0}; | |
| | |
| CHECK(secp256k1_is_zero_array(buf1, 0) == 1); | |
| CHECK(secp256k1_is_zero_array(buf1, 1) == 1); | |
| CHECK(secp256k1_is_zero_array(buf1, 2) == 0); | |
| CHECK(secp256k1_is_zero_array(buf2, 1) == 0); | |
| CHECK(secp256k1_is_zero_array(buf2, 2) == 0); | |
| } | |
| | |
| static void run_secp256k1_byteorder_tests(void) { | |
| { | |
| const uint32_t x = 0xFF03AB45; | |
| const unsigned char x_be[4] = {0xFF, 0x03, 0xAB, 0x45}; | |
| unsigned char buf[4]; | |
| uint32_t x_; | |
| | |
| secp256k1_write_be32(buf, x); | |
| CHECK(secp256k1_memcmp_var(buf, x_be, sizeof(buf)) == 0); | |
| | |
| x_ = secp256k1_read_be32(buf); | |
| CHECK(x == x_); | |
| } | |
| | |
| { | |
| const uint64_t x = 0xCAFE0123BEEF4567; | |
| const unsigned char x_be[8] = {0xCA, 0xFE, 0x01, 0x23, 0xBE, 0xEF, 0x45, 0x67}; | |
| unsigned char buf[8]; | |
| uint64_t x_; | |
| | |
| secp256k1_write_be64(buf, x); | |
| CHECK(secp256k1_memcmp_var(buf, x_be, sizeof(buf)) == 0); | |
| | |
| x_ = secp256k1_read_be64(buf); | |
| CHECK(x == x_); | |
| } | |
| } | |
| | |
| static void int_cmov_test(void) { | |
| int r = INT_MAX; | |
| int a = 0; | |
| | |
| secp256k1_int_cmov(&r, &a, 0); | |
| CHECK(r == INT_MAX); | |
| | |
| r = 0; a = INT_MAX; | |
| secp256k1_int_cmov(&r, &a, 1); | |
| CHECK(r == INT_MAX); | |
| | |
| a = 0; | |
| secp256k1_int_cmov(&r, &a, 1); | |
| CHECK(r == 0); | |
| | |
| a = 1; | |
| secp256k1_int_cmov(&r, &a, 1); | |
| CHECK(r == 1); | |
| | |
| r = 1; a = 0; | |
| secp256k1_int_cmov(&r, &a, 0); | |
| CHECK(r == 1); | |
| | |
| } | |
| | |
| static void fe_cmov_test(void) { | |
| static const secp256k1_fe zero = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0); | |
| static const secp256k1_fe one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); | |
| static const secp256k1_fe max = SECP256K1_FE_CONST( | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL | |
| ); | |
| secp256k1_fe r = max; | |
| secp256k1_fe a = zero; | |
| | |
| secp256k1_fe_cmov(&r, &a, 0); | |
| CHECK(fe_identical(&r, &max)); | |
| | |
| r = zero; a = max; | |
| secp256k1_fe_cmov(&r, &a, 1); | |
| CHECK(fe_identical(&r, &max)); | |
| | |
| a = zero; | |
| secp256k1_fe_cmov(&r, &a, 1); | |
| CHECK(fe_identical(&r, &zero)); | |
| | |
| a = one; | |
| secp256k1_fe_cmov(&r, &a, 1); | |
| CHECK(fe_identical(&r, &one)); | |
| | |
| r = one; a = zero; | |
| secp256k1_fe_cmov(&r, &a, 0); | |
| CHECK(fe_identical(&r, &one)); | |
| } | |
| | |
| static void fe_storage_cmov_test(void) { | |
| static const secp256k1_fe_storage zero = SECP256K1_FE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 0); | |
| static const secp256k1_fe_storage one = SECP256K1_FE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 1); | |
| static const secp256k1_fe_storage max = SECP256K1_FE_STORAGE_CONST( | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL | |
| ); | |
| secp256k1_fe_storage r = max; | |
| secp256k1_fe_storage a = zero; | |
| | |
| secp256k1_fe_storage_cmov(&r, &a, 0); | |
| CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); | |
| | |
| r = zero; a = max; | |
| secp256k1_fe_storage_cmov(&r, &a, 1); | |
| CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); | |
| | |
| a = zero; | |
| secp256k1_fe_storage_cmov(&r, &a, 1); | |
| CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0); | |
| | |
| a = one; | |
| secp256k1_fe_storage_cmov(&r, &a, 1); | |
| CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); | |
| | |
| r = one; a = zero; | |
| secp256k1_fe_storage_cmov(&r, &a, 0); | |
| CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); | |
| } | |
| | |
| static void scalar_cmov_test(void) { | |
| static const secp256k1_scalar max = SECP256K1_SCALAR_CONST( | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, | |
| 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364140UL | |
| ); | |
| secp256k1_scalar r = max; | |
| secp256k1_scalar a = secp256k1_scalar_zero; | |
| | |
| secp256k1_scalar_cmov(&r, &a, 0); | |
| CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); | |
| | |
| r = secp256k1_scalar_zero; a = max; | |
| secp256k1_scalar_cmov(&r, &a, 1); | |
| CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); | |
| | |
| a = secp256k1_scalar_zero; | |
| secp256k1_scalar_cmov(&r, &a, 1); | |
| CHECK(secp256k1_memcmp_var(&r, &secp256k1_scalar_zero, sizeof(r)) == 0); | |
| | |
| a = secp256k1_scalar_one; | |
| secp256k1_scalar_cmov(&r, &a, 1); | |
| CHECK(secp256k1_memcmp_var(&r, &secp256k1_scalar_one, sizeof(r)) == 0); | |
| | |
| r = secp256k1_scalar_one; a = secp256k1_scalar_zero; | |
| secp256k1_scalar_cmov(&r, &a, 0); | |
| CHECK(secp256k1_memcmp_var(&r, &secp256k1_scalar_one, sizeof(r)) == 0); | |
| } | |
| | |
| static void ge_storage_cmov_test(void) { | |
| static const secp256k1_ge_storage zero = SECP256K1_GE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); | |
| static const secp256k1_ge_storage one = SECP256K1_GE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1); | |
| static const secp256k1_ge_storage max = SECP256K1_GE_STORAGE_CONST( | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL | |
| ); | |
| secp256k1_ge_storage r = max; | |
| secp256k1_ge_storage a = zero; | |
| | |
| secp256k1_ge_storage_cmov(&r, &a, 0); | |
| CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); | |
| | |
| r = zero; a = max; | |
| secp256k1_ge_storage_cmov(&r, &a, 1); | |
| CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); | |
| | |
| a = zero; | |
| secp256k1_ge_storage_cmov(&r, &a, 1); | |
| CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0); | |
| | |
| a = one; | |
| secp256k1_ge_storage_cmov(&r, &a, 1); | |
| CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); | |
| | |
| r = one; a = zero; | |
| secp256k1_ge_storage_cmov(&r, &a, 0); | |
| CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); | |
| } | |
| | |
| static void run_cmov_tests(void) { | |
| int_cmov_test(); | |
| fe_cmov_test(); | |
| fe_storage_cmov_test(); | |
| scalar_cmov_test(); | |
| ge_storage_cmov_test(); | |
| } | |
| | |
| /* --------------------------------------------------------- */ | |
| /* Test Registry */ | |
| /* --------------------------------------------------------- */ | |
| | |
| /* --- Special test cases that must run before RNG initialization --- */ | |
| static const struct tf_test_entry tests_no_rng[] = { | |
| CASE(xoshiro256pp_tests), | |
| }; | |
| static const struct tf_test_module registry_modules_no_rng = MAKE_TEST_MODULE(no_rng); | |
| | |
| /* --- Standard test cases start here --- */ | |
| static const struct tf_test_entry tests_general[] = { | |
| CASE(selftest_tests), | |
| CASE(all_proper_context_tests), | |
| CASE(all_static_context_tests), | |
| CASE(deprecated_context_flags_test), | |
| CASE(scratch_tests), | |
| }; | |
| | |
| static const struct tf_test_entry tests_integer[] = { | |
| #ifdef SECP256K1_WIDEMUL_INT128 | |
| CASE(int128_tests), | |
| #endif | |
| CASE(ctz_tests), | |
| CASE(modinv_tests), | |
| CASE(inverse_tests), | |
| }; | |
| | |
| static const struct tf_test_entry tests_hash[] = { | |
| CASE(sha256_known_output_tests), | |
| CASE(sha256_counter_tests), | |
| CASE(hmac_sha256_tests), | |
| CASE(rfc6979_hmac_sha256_tests), | |
| CASE(tagged_sha256_tests), | |
| }; | |
| | |
| static const struct tf_test_entry tests_scalar[] = { | |
| CASE(scalar_tests), | |
| }; | |
| | |
| static const struct tf_test_entry tests_field[] = { | |
| CASE(field_half), | |
| CASE(field_misc), | |
| CASE(field_convert), | |
| CASE(field_be32_overflow), | |
| CASE(fe_mul), | |
| CASE(sqr), | |
| CASE(sqrt), | |
| }; | |
| | |
| static const struct tf_test_entry tests_group[] = { | |
| CASE(ge), | |
| CASE(gej), | |
| CASE(group_decompress), | |
| }; | |
| | |
| static const struct tf_test_entry tests_ecmult[] = { | |
| CASE(ecmult_pre_g), | |
| CASE(wnaf), | |
| CASE(point_times_order), | |
| CASE(ecmult_near_split_bound), | |
| CASE(ecmult_chain), | |
| CASE(ecmult_constants), | |
| CASE(ecmult_gen_blind), | |
| CASE(ecmult_const_tests), | |
| CASE(ecmult_multi_tests), | |
| CASE(ec_combine), | |
| }; | |
| | |
| static const struct tf_test_entry tests_ec[] = { | |
| CASE(endomorphism_tests), | |
| CASE(ec_pubkey_parse_test), | |
| CASE(eckey_edge_case_test), | |
| CASE(eckey_negate_test), | |
| }; | |
| | |
| static const struct tf_test_entry tests_ecdsa[] = { | |
| CASE(ec_illegal_argument_tests), | |
| CASE(pubkey_comparison), | |
| CASE(pubkey_sort), | |
| CASE(random_pubkeys), | |
| CASE(ecdsa_der_parse), | |
| CASE(ecdsa_sign_verify), | |
| CASE(ecdsa_end_to_end), | |
| CASE(ecdsa_edge_cases), | |
| CASE(ecdsa_wycheproof), | |
| }; | |
| | |
| static const struct tf_test_entry tests_utils[] = { | |
| CASE(hsort_tests), | |
| CASE(secp256k1_memczero_test), | |
| CASE(secp256k1_is_zero_array_test), | |
| CASE(secp256k1_byteorder_tests), | |
| CASE(cmov_tests), | |
| }; | |
| | |
| /* Register test modules */ | |
| static const struct tf_test_module registry_modules[] = { | |
| MAKE_TEST_MODULE(general), | |
| MAKE_TEST_MODULE(integer), | |
| MAKE_TEST_MODULE(hash), | |
| MAKE_TEST_MODULE(scalar), | |
| MAKE_TEST_MODULE(field), | |
| MAKE_TEST_MODULE(group), | |
| MAKE_TEST_MODULE(ecmult), | |
| MAKE_TEST_MODULE(ec), | |
| #ifdef ENABLE_MODULE_ECDH | |
| MAKE_TEST_MODULE(ecdh), | |
| #endif | |
| MAKE_TEST_MODULE(ecdsa), | |
| #ifdef ENABLE_MODULE_RECOVERY | |
| /* ECDSA pubkey recovery tests */ | |
| MAKE_TEST_MODULE(recovery), | |
| #endif | |
| #ifdef ENABLE_MODULE_EXTRAKEYS | |
| MAKE_TEST_MODULE(extrakeys), | |
| #endif | |
| #ifdef ENABLE_MODULE_SCHNORRSIG | |
| MAKE_TEST_MODULE(schnorrsig), | |
| #endif | |
| #ifdef ENABLE_MODULE_MUSIG | |
| MAKE_TEST_MODULE(musig), | |
| #endif | |
| #ifdef ENABLE_MODULE_ELLSWIFT | |
| MAKE_TEST_MODULE(ellswift), | |
| #endif | |
| MAKE_TEST_MODULE(utils), | |
| }; | |
| | |
| /* Setup test environment */ | |
| static int setup(void) { | |
| /* Create a global context available to all tests */ | |
| CTX = secp256k1_context_create(SECP256K1_CONTEXT_NONE); | |
| /* Randomize the context only with probability 15/16 | |
| to make sure we test without context randomization from time to time. | |
| TODO Reconsider this when recalibrating the tests. */ | |
| if (testrand_bits(4)) { | |
| unsigned char rand32[32]; | |
| testrand256(rand32); | |
| CHECK(secp256k1_context_randomize(CTX, rand32)); | |
| } | |
| /* Make a writable copy of secp256k1_context_static in order to test the effect of API functions | |
| that write to the context. The API does not support cloning the static context, so we use | |
| memcpy instead. The user is not supposed to copy a context but we should still ensure that | |
| the API functions handle copies of the static context gracefully. */ | |
| STATIC_CTX = malloc(sizeof(*secp256k1_context_static)); | |
| CHECK(STATIC_CTX != NULL); | |
| memcpy(STATIC_CTX, secp256k1_context_static, sizeof(secp256k1_context)); | |
| CHECK(!secp256k1_context_is_proper(STATIC_CTX)); | |
| return 0; | |
| } | |
| | |
| /* Shutdown test environment */ | |
| static int teardown(void) { | |
| free(STATIC_CTX); | |
| secp256k1_context_destroy(CTX); | |
| return 0; | |
| } | |
| | |
| int main(int argc, char **argv) { | |
| struct tf_framework tf = {0}; | |
| tf.registry_modules = registry_modules; | |
| tf.num_modules = sizeof(registry_modules) / sizeof(registry_modules[0]); | |
| tf.registry_no_rng = ®istry_modules_no_rng; | |
| | |
| /* Add context creation/destruction functions */ | |
| tf.fn_setup = setup; | |
| tf.fn_teardown = teardown; | |
| | |
| /* Init and run framework */ | |
| if (tf_init(&tf, argc, argv) != 0) return EXIT_FAILURE; | |
| return tf_run(&tf); | |
| } | |