| /*********************************************************************** | |
| * Copyright (c) 2014 Pieter Wuille * | |
| * Distributed under the MIT software license, see the accompanying * | |
| * file COPYING or https://www.opensource.org/licenses/mit-license.php.* | |
| ***********************************************************************/ | |
| | |
| #ifndef SECP256K1_SCALAR_IMPL_H | |
| #define SECP256K1_SCALAR_IMPL_H | |
| | |
| #ifdef VERIFY | |
| #include <string.h> | |
| #endif | |
| | |
| #include "scalar.h" | |
| #include "util.h" | |
| | |
| #if defined(EXHAUSTIVE_TEST_ORDER) | |
| #include "scalar_low_impl.h" | |
| #elif defined(SECP256K1_WIDEMUL_INT128) | |
| #include "scalar_4x64_impl.h" | |
| #elif defined(SECP256K1_WIDEMUL_INT64) | |
| #include "scalar_8x32_impl.h" | |
| #else | |
| #error "Please select wide multiplication implementation" | |
| #endif | |
| | |
| static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); | |
| static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); | |
| | |
| SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { | |
| secp256k1_memclear_explicit(r, sizeof(secp256k1_scalar)); | |
| } | |
| | |
| static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) { | |
| int overflow; | |
| secp256k1_scalar_set_b32(r, bin, &overflow); | |
| | |
| SECP256K1_SCALAR_VERIFY(r); | |
| return (!overflow) & (!secp256k1_scalar_is_zero(r)); | |
| } | |
| | |
| static void secp256k1_scalar_verify(const secp256k1_scalar *r) { | |
| VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); | |
| | |
| (void)r; | |
| } | |
| | |
| #if defined(EXHAUSTIVE_TEST_ORDER) | |
| /* Begin of section generated by sage/gen_exhaustive_groups.sage. */ | |
| # if EXHAUSTIVE_TEST_ORDER == 7 | |
| # define EXHAUSTIVE_TEST_LAMBDA 2 | |
| # elif EXHAUSTIVE_TEST_ORDER == 13 | |
| # define EXHAUSTIVE_TEST_LAMBDA 9 | |
| # elif EXHAUSTIVE_TEST_ORDER == 199 | |
| # define EXHAUSTIVE_TEST_LAMBDA 92 | |
| # else | |
| # error No known lambda for the specified exhaustive test group order. | |
| # endif | |
| /* End of section generated by sage/gen_exhaustive_groups.sage. */ | |
| | |
| /** | |
| * Find r1 and r2 given k, such that r1 + r2 * lambda == k mod n; unlike in the | |
| * full case we don't bother making r1 and r2 be small, we just want them to be | |
| * nontrivial to get full test coverage for the exhaustive tests. We therefore | |
| * (arbitrarily) set r2 = k + 5 (mod n) and r1 = k - r2 * lambda (mod n). | |
| */ | |
| static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT r1, secp256k1_scalar * SECP256K1_RESTRICT r2, const secp256k1_scalar * SECP256K1_RESTRICT k) { | |
| SECP256K1_SCALAR_VERIFY(k); | |
| VERIFY_CHECK(r1 != k); | |
| VERIFY_CHECK(r2 != k); | |
| VERIFY_CHECK(r1 != r2); | |
| | |
| *r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER; | |
| *r1 = (*k + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER; | |
| | |
| SECP256K1_SCALAR_VERIFY(r1); | |
| SECP256K1_SCALAR_VERIFY(r2); | |
| } | |
| #else | |
| /** | |
| * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where | |
| * lambda is: */ | |
| static const secp256k1_scalar secp256k1_const_lambda = SECP256K1_SCALAR_CONST( | |
| 0x5363AD4CUL, 0xC05C30E0UL, 0xA5261C02UL, 0x8812645AUL, | |
| 0x122E22EAUL, 0x20816678UL, 0xDF02967CUL, 0x1B23BD72UL | |
| ); | |
| | |
| #ifdef VERIFY | |
| static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k); | |
| #endif | |
| | |
| /* | |
| * Both lambda and beta are primitive cube roots of unity. That is lambda^3 == 1 mod n and | |
| * beta^3 == 1 mod p, where n is the curve order and p is the field order. | |
| * | |
| * Furthermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are | |
| * roots of X^2 + X + 1. Therefore lambda^2 + lambda == -1 mod n and beta^2 + beta == -1 mod p. | |
| * (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.) | |
| * | |
| * Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring | |
| * homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi | |
| * is a lattice over Z[l] (considering Z[l] as a Z-module). This lattice is generated by a | |
| * reduced basis {a1 + b1*l, a2 + b2*l} where | |
| * | |
| * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} | |
| * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} | |
| * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} | |
| * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} | |
| * | |
| * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm | |
| * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 | |
| * and k2 are small in absolute value. | |
| * | |
| * The algorithm computes c1 = round(b2 * k / n) and c2 = round((-b1) * k / n), and gives | |
| * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and | |
| * compute r2 = k2 mod n, and r1 = k1 mod n = (k - r2 * lambda) mod n, avoiding the need for | |
| * the constants a1 and a2. | |
| * | |
| * g1, g2 are precomputed constants used to replace division with a rounded multiplication | |
| * when decomposing the scalar for an endomorphism-based point multiplication. | |
| * | |
| * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve | |
| * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. | |
| * | |
| * The derivation is described in the paper "Efficient Software Implementation of Public-Key | |
| * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), | |
| * Section 4.3 (here we use a somewhat higher-precision estimate): | |
| * d = a1*b2 - b1*a2 | |
| * g1 = round(2^384 * b2/d) | |
| * g2 = round(2^384 * (-b1)/d) | |
| * | |
| * (Note that d is also equal to the curve order, n, here because [a1,b1] and [a2,b2] | |
| * can be found as outputs of the Extended Euclidean Algorithm on inputs n and lambda). | |
| * | |
| * The function below splits k into r1 and r2, such that | |
| * - r1 + lambda * r2 == k (mod n) | |
| * - either r1 < 2^128 or -r1 mod n < 2^128 | |
| * - either r2 < 2^128 or -r2 mod n < 2^128 | |
| * | |
| * See proof below. | |
| */ | |
| static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT r1, secp256k1_scalar * SECP256K1_RESTRICT r2, const secp256k1_scalar * SECP256K1_RESTRICT k) { | |
| secp256k1_scalar c1, c2; | |
| static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST( | |
| 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, | |
| 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL | |
| ); | |
| static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST( | |
| 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, | |
| 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL | |
| ); | |
| static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST( | |
| 0x3086D221UL, 0xA7D46BCDUL, 0xE86C90E4UL, 0x9284EB15UL, | |
| 0x3DAA8A14UL, 0x71E8CA7FUL, 0xE893209AUL, 0x45DBB031UL | |
| ); | |
| static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST( | |
| 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL, | |
| 0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL | |
| ); | |
| SECP256K1_SCALAR_VERIFY(k); | |
| VERIFY_CHECK(r1 != k); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| VERIFY_CHECK(r2 != k); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| VERIFY_CHECK(r1 != r2); | |
| Loop condition is false. Exiting loop | |
| Taking false branch | |
| | |
| /* these _var calls are constant time since the shift amount is constant */ | |
| secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384); | |
| Calling 'secp256k1_scalar_mul_shift_var' | |
| secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384); | |
| secp256k1_scalar_mul(&c1, &c1, &minus_b1); | |
| secp256k1_scalar_mul(&c2, &c2, &minus_b2); | |
| secp256k1_scalar_add(r2, &c1, &c2); | |
| secp256k1_scalar_mul(r1, r2, &secp256k1_const_lambda); | |
| secp256k1_scalar_negate(r1, r1); | |
| secp256k1_scalar_add(r1, r1, k); | |
| | |
| SECP256K1_SCALAR_VERIFY(r1); | |
| SECP256K1_SCALAR_VERIFY(r2); | |
| #ifdef VERIFY | |
| secp256k1_scalar_split_lambda_verify(r1, r2, k); | |
| #endif | |
| } | |
| | |
| #ifdef VERIFY | |
| /* | |
| * Proof for secp256k1_scalar_split_lambda's bounds. | |
| * | |
| * Let | |
| * - epsilon1 = 2^256 * |g1/2^384 - b2/d| | |
| * - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d| | |
| * - c1 = round(k*g1/2^384) | |
| * - c2 = round(k*g2/2^384) | |
| * | |
| * Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1 | |
| * | |
| * |c1 - k*b2/d| | |
| * = | |
| * |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d| | |
| * <= {triangle inequality} | |
| * |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d| | |
| * = | |
| * |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d| | |
| * < {rounding in c1 and 0 <= k < 2^256} | |
| * 2^-1 + 2^256 * |g1/2^384 - b2/d| | |
| * = {definition of epsilon1} | |
| * 2^-1 + epsilon1 | |
| * | |
| * Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2 | |
| * | |
| * |c2 - k*(-b1)/d| | |
| * = | |
| * |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d| | |
| * <= {triangle inequality} | |
| * |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d| | |
| * = | |
| * |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d| | |
| * < {rounding in c2 and 0 <= k < 2^256} | |
| * 2^-1 + 2^256 * |g2/2^384 - (-b1)/d| | |
| * = {definition of epsilon2} | |
| * 2^-1 + epsilon2 | |
| * | |
| * Let | |
| * - k1 = k - c1*a1 - c2*a2 | |
| * - k2 = - c1*b1 - c2*b2 | |
| * | |
| * Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128 | |
| * | |
| * |k1| | |
| * = {definition of k1} | |
| * |k - c1*a1 - c2*a2| | |
| * = {(a1*b2 - b1*a2)/n = 1} | |
| * |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2| | |
| * = | |
| * |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)| | |
| * <= {triangle inequality} | |
| * a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2| | |
| * < {Lemma 1 and Lemma 2} | |
| * a1*(2^-1 + epsilon1) + a2*(2^-1 + epsilon2) | |
| * < {rounding up to an integer} | |
| * (a1 + a2 + 1)/2 | |
| * < {rounding up to a power of 2} | |
| * 2^128 | |
| * | |
| * Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128 | |
| * | |
| * |k2| | |
| * = {definition of k2} | |
| * |- c1*a1 - c2*a2| | |
| * = {(b1*b2 - b1*b2)/n = 0} | |
| * |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2| | |
| * = | |
| * |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)| | |
| * <= {triangle inequality} | |
| * (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2| | |
| * < {Lemma 1 and Lemma 2} | |
| * (-b1)*(2^-1 + epsilon1) + b2*(2^-1 + epsilon2) | |
| * < {rounding up to an integer} | |
| * (-b1 + b2)/2 + 1 | |
| * < {rounding up to a power of 2} | |
| * 2^128 | |
| * | |
| * Let | |
| * - r2 = k2 mod n | |
| * - r1 = k - r2*lambda mod n. | |
| * | |
| * Notice that r1 is defined such that r1 + r2 * lambda == k (mod n). | |
| * | |
| * Lemma 5: r1 == k1 mod n. | |
| * | |
| * r1 | |
| * == {definition of r1 and r2} | |
| * k - k2*lambda | |
| * == {definition of k2} | |
| * k - (- c1*b1 - c2*b2)*lambda | |
| * == | |
| * k + c1*b1*lambda + c2*b2*lambda | |
| * == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n} | |
| * k - c1*a1 - c2*a2 | |
| * == {definition of k1} | |
| * k1 | |
| * | |
| * From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that | |
| * | |
| * - either r1 < 2^128 or -r1 mod n < 2^128 | |
| * - either r2 < 2^128 or -r2 mod n < 2^128. | |
| * | |
| * Q.E.D. | |
| */ | |
| static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k) { | |
| secp256k1_scalar s; | |
| unsigned char buf1[32]; | |
| unsigned char buf2[32]; | |
| | |
| /* (a1 + a2 + 1)/2 is 0xa2a8918ca85bafe22016d0b917e4dd77 */ | |
| static const unsigned char k1_bound[32] = { | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0xa2, 0xa8, 0x91, 0x8c, 0xa8, 0x5b, 0xaf, 0xe2, 0x20, 0x16, 0xd0, 0xb9, 0x17, 0xe4, 0xdd, 0x77 | |
| }; | |
| | |
| /* (-b1 + b2)/2 + 1 is 0x8a65287bd47179fb2be08846cea267ed */ | |
| static const unsigned char k2_bound[32] = { | |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
| 0x8a, 0x65, 0x28, 0x7b, 0xd4, 0x71, 0x79, 0xfb, 0x2b, 0xe0, 0x88, 0x46, 0xce, 0xa2, 0x67, 0xed | |
| }; | |
| | |
| secp256k1_scalar_mul(&s, &secp256k1_const_lambda, r2); | |
| secp256k1_scalar_add(&s, &s, r1); | |
| VERIFY_CHECK(secp256k1_scalar_eq(&s, k)); | |
| | |
| secp256k1_scalar_negate(&s, r1); | |
| secp256k1_scalar_get_b32(buf1, r1); | |
| secp256k1_scalar_get_b32(buf2, &s); | |
| VERIFY_CHECK(secp256k1_memcmp_var(buf1, k1_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k1_bound, 32) < 0); | |
| | |
| secp256k1_scalar_negate(&s, r2); | |
| secp256k1_scalar_get_b32(buf1, r2); | |
| secp256k1_scalar_get_b32(buf2, &s); | |
| VERIFY_CHECK(secp256k1_memcmp_var(buf1, k2_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k2_bound, 32) < 0); | |
| } | |
| #endif /* VERIFY */ | |
| #endif /* !defined(EXHAUSTIVE_TEST_ORDER) */ | |
| | |
| #endif /* SECP256K1_SCALAR_IMPL_H */ | |