| /*********************************************************************** | |
| * Copyright (c) 2013, 2014 Pieter Wuille * | |
| * Distributed under the MIT software license, see the accompanying * | |
| * file COPYING or https://www.opensource.org/licenses/mit-license.php.* | |
| ***********************************************************************/ | |
| | |
| #ifndef SECP256K1_GROUP_IMPL_H | |
| #define SECP256K1_GROUP_IMPL_H | |
| | |
| #include <string.h> | |
| | |
| #include "field.h" | |
| #include "group.h" | |
| #include "util.h" | |
| | |
| /* Begin of section generated by sage/gen_exhaustive_groups.sage. */ | |
| #define SECP256K1_G_ORDER_7 SECP256K1_GE_CONST(\ | |
| 0x66625d13, 0x317ffe44, 0x63d32cff, 0x1ca02b9b,\ | |
| 0xe5c6d070, 0x50b4b05e, 0x81cc30db, 0xf5166f0a,\ | |
| 0x1e60e897, 0xa7c00c7c, 0x2df53eb6, 0x98274ff4,\ | |
| 0x64252f42, 0x8ca44e17, 0x3b25418c, 0xff4ab0cf\ | |
| ) | |
| #define SECP256K1_G_ORDER_13 SECP256K1_GE_CONST(\ | |
| 0xa2482ff8, 0x4bf34edf, 0xa51262fd, 0xe57921db,\ | |
| 0xe0dd2cb7, 0xa5914790, 0xbc71631f, 0xc09704fb,\ | |
| 0x942536cb, 0xa3e49492, 0x3a701cc3, 0xee3e443f,\ | |
| 0xdf182aa9, 0x15b8aa6a, 0x166d3b19, 0xba84b045\ | |
| ) | |
| #define SECP256K1_G_ORDER_199 SECP256K1_GE_CONST(\ | |
| 0x7fb07b5c, 0xd07c3bda, 0x553902e2, 0x7a87ea2c,\ | |
| 0x35108a7f, 0x051f41e5, 0xb76abad5, 0x1f2703ad,\ | |
| 0x0a251539, 0x5b4c4438, 0x952a634f, 0xac10dd4d,\ | |
| 0x6d6f4745, 0x98990c27, 0x3a4f3116, 0xd32ff969\ | |
| ) | |
| /** Generator for secp256k1, value 'g' defined in | |
| * "Standards for Efficient Cryptography" (SEC2) 2.7.1. | |
| */ | |
| #define SECP256K1_G SECP256K1_GE_CONST(\ | |
| 0x79be667e, 0xf9dcbbac, 0x55a06295, 0xce870b07,\ | |
| 0x029bfcdb, 0x2dce28d9, 0x59f2815b, 0x16f81798,\ | |
| 0x483ada77, 0x26a3c465, 0x5da4fbfc, 0x0e1108a8,\ | |
| 0xfd17b448, 0xa6855419, 0x9c47d08f, 0xfb10d4b8\ | |
| ) | |
| /* These exhaustive group test orders and generators are chosen such that: | |
| * - The field size is equal to that of secp256k1, so field code is the same. | |
| * - The curve equation is of the form y^2=x^3+B for some small constant B. | |
| * - The subgroup has a generator 2*P, where P.x is as small as possible. | |
| * - The subgroup has size less than 1000 to permit exhaustive testing. | |
| * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y). | |
| */ | |
| #if defined(EXHAUSTIVE_TEST_ORDER) | |
| # if EXHAUSTIVE_TEST_ORDER == 7 | |
| | |
| static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_7; | |
| #define SECP256K1_B 6 | |
| | |
| # elif EXHAUSTIVE_TEST_ORDER == 13 | |
| | |
| static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_13; | |
| #define SECP256K1_B 2 | |
| | |
| # elif EXHAUSTIVE_TEST_ORDER == 199 | |
| | |
| static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_199; | |
| #define SECP256K1_B 4 | |
| | |
| # else | |
| # error No known generator for the specified exhaustive test group order. | |
| # endif | |
| #else | |
| | |
| static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G; | |
| #define SECP256K1_B 7 | |
| | |
| #endif | |
| /* End of section generated by sage/gen_exhaustive_groups.sage. */ | |
| | |
| static void secp256k1_ge_verify(const secp256k1_ge *a) { | |
| SECP256K1_FE_VERIFY(&a->x); | |
| SECP256K1_FE_VERIFY(&a->y); | |
| SECP256K1_FE_VERIFY_MAGNITUDE(&a->x, SECP256K1_GE_X_MAGNITUDE_MAX); | |
| SECP256K1_FE_VERIFY_MAGNITUDE(&a->y, SECP256K1_GE_Y_MAGNITUDE_MAX); | |
| VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); | |
| (void)a; | |
| } | |
| | |
| static void secp256k1_gej_verify(const secp256k1_gej *a) { | |
| SECP256K1_FE_VERIFY(&a->x); | |
| SECP256K1_FE_VERIFY(&a->y); | |
| SECP256K1_FE_VERIFY(&a->z); | |
| SECP256K1_FE_VERIFY_MAGNITUDE(&a->x, SECP256K1_GEJ_X_MAGNITUDE_MAX); | |
| SECP256K1_FE_VERIFY_MAGNITUDE(&a->y, SECP256K1_GEJ_Y_MAGNITUDE_MAX); | |
| SECP256K1_FE_VERIFY_MAGNITUDE(&a->z, SECP256K1_GEJ_Z_MAGNITUDE_MAX); | |
| VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); | |
| (void)a; | |
| } | |
| | |
| /* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */ | |
| static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { | |
| secp256k1_fe zi2; | |
| secp256k1_fe zi3; | |
| SECP256K1_GEJ_VERIFY(a); | |
| SECP256K1_FE_VERIFY(zi); | |
| VERIFY_CHECK(!a->infinity); | |
| | |
| secp256k1_fe_sqr(&zi2, zi); | |
| secp256k1_fe_mul(&zi3, &zi2, zi); | |
| secp256k1_fe_mul(&r->x, &a->x, &zi2); | |
| secp256k1_fe_mul(&r->y, &a->y, &zi3); | |
| r->infinity = a->infinity; | |
| | |
| SECP256K1_GE_VERIFY(r); | |
| } | |
| | |
| /* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */ | |
| static void secp256k1_ge_set_ge_zinv(secp256k1_ge *r, const secp256k1_ge *a, const secp256k1_fe *zi) { | |
| secp256k1_fe zi2; | |
| secp256k1_fe zi3; | |
| SECP256K1_GE_VERIFY(a); | |
| SECP256K1_FE_VERIFY(zi); | |
| VERIFY_CHECK(!a->infinity); | |
| | |
| secp256k1_fe_sqr(&zi2, zi); | |
| secp256k1_fe_mul(&zi3, &zi2, zi); | |
| secp256k1_fe_mul(&r->x, &a->x, &zi2); | |
| secp256k1_fe_mul(&r->y, &a->y, &zi3); | |
| r->infinity = a->infinity; | |
| | |
| SECP256K1_GE_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) { | |
| SECP256K1_FE_VERIFY(x); | |
| SECP256K1_FE_VERIFY(y); | |
| | |
| r->infinity = 0; | |
| r->x = *x; | |
| r->y = *y; | |
| | |
| SECP256K1_GE_VERIFY(r); | |
| } | |
| | |
| static int secp256k1_ge_is_infinity(const secp256k1_ge *a) { | |
| SECP256K1_GE_VERIFY(a); | |
| | |
| return a->infinity; | |
| } | |
| | |
| static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) { | |
| SECP256K1_GE_VERIFY(a); | |
| | |
| *r = *a; | |
| secp256k1_fe_normalize_weak(&r->y); | |
| secp256k1_fe_negate(&r->y, &r->y, 1); | |
| | |
| SECP256K1_GE_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { | |
| secp256k1_fe z2, z3; | |
| SECP256K1_GEJ_VERIFY(a); | |
| | |
| r->infinity = a->infinity; | |
| secp256k1_fe_inv(&a->z, &a->z); | |
| secp256k1_fe_sqr(&z2, &a->z); | |
| secp256k1_fe_mul(&z3, &a->z, &z2); | |
| secp256k1_fe_mul(&a->x, &a->x, &z2); | |
| secp256k1_fe_mul(&a->y, &a->y, &z3); | |
| secp256k1_fe_set_int(&a->z, 1); | |
| r->x = a->x; | |
| r->y = a->y; | |
| | |
| SECP256K1_GEJ_VERIFY(a); | |
| SECP256K1_GE_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { | |
| secp256k1_fe z2, z3; | |
| SECP256K1_GEJ_VERIFY(a); | |
| | |
| if (secp256k1_gej_is_infinity(a)) { | |
| secp256k1_ge_set_infinity(r); | |
| return; | |
| } | |
| r->infinity = 0; | |
| secp256k1_fe_inv_var(&a->z, &a->z); | |
| secp256k1_fe_sqr(&z2, &a->z); | |
| secp256k1_fe_mul(&z3, &a->z, &z2); | |
| secp256k1_fe_mul(&a->x, &a->x, &z2); | |
| secp256k1_fe_mul(&a->y, &a->y, &z3); | |
| secp256k1_fe_set_int(&a->z, 1); | |
| secp256k1_ge_set_xy(r, &a->x, &a->y); | |
| | |
| SECP256K1_GEJ_VERIFY(a); | |
| SECP256K1_GE_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_ge_set_all_gej(secp256k1_ge *r, const secp256k1_gej *a, size_t len) { | |
| secp256k1_fe u; | |
| size_t i; | |
| #ifdef VERIFY | |
| for (i = 0; i < len; i++) { | |
| SECP256K1_GEJ_VERIFY(&a[i]); | |
| VERIFY_CHECK(!secp256k1_gej_is_infinity(&a[i])); | |
| } | |
| #endif | |
| | |
| if (len == 0) { | |
| return; | |
| } | |
| | |
| /* Use destination's x coordinates as scratch space */ | |
| r[0].x = a[0].z; | |
| for (i = 1; i < len; i++) { | |
| secp256k1_fe_mul(&r[i].x, &r[i - 1].x, &a[i].z); | |
| } | |
| secp256k1_fe_inv(&u, &r[len - 1].x); | |
| | |
| for (i = len - 1; i > 0; i--) { | |
| secp256k1_fe_mul(&r[i].x, &r[i - 1].x, &u); | |
| secp256k1_fe_mul(&u, &u, &a[i].z); | |
| } | |
| r[0].x = u; | |
| | |
| for (i = 0; i < len; i++) { | |
| secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x); | |
| } | |
| | |
| #ifdef VERIFY | |
| for (i = 0; i < len; i++) { | |
| SECP256K1_GE_VERIFY(&r[i]); | |
| } | |
| #endif | |
| } | |
| | |
| static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) { | |
| secp256k1_fe u; | |
| size_t i; | |
| size_t last_i = SIZE_MAX; | |
| #ifdef VERIFY | |
| for (i = 0; i < len; i++) { | |
| SECP256K1_GEJ_VERIFY(&a[i]); | |
| } | |
| #endif | |
| | |
| for (i = 0; i < len; i++) { | |
| if (a[i].infinity) { | |
| secp256k1_ge_set_infinity(&r[i]); | |
| } else { | |
| /* Use destination's x coordinates as scratch space */ | |
| if (last_i == SIZE_MAX) { | |
| r[i].x = a[i].z; | |
| } else { | |
| secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z); | |
| } | |
| last_i = i; | |
| } | |
| } | |
| if (last_i == SIZE_MAX) { | |
| return; | |
| } | |
| secp256k1_fe_inv_var(&u, &r[last_i].x); | |
| | |
| i = last_i; | |
| while (i > 0) { | |
| i--; | |
| if (!a[i].infinity) { | |
| secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u); | |
| secp256k1_fe_mul(&u, &u, &a[last_i].z); | |
| last_i = i; | |
| } | |
| } | |
| VERIFY_CHECK(!a[last_i].infinity); | |
| r[last_i].x = u; | |
| | |
| for (i = 0; i < len; i++) { | |
| if (!a[i].infinity) { | |
| secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x); | |
| } | |
| } | |
| | |
| #ifdef VERIFY | |
| for (i = 0; i < len; i++) { | |
| SECP256K1_GE_VERIFY(&r[i]); | |
| } | |
| #endif | |
| } | |
| | |
| static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr) { | |
| size_t i; | |
| secp256k1_fe zs; | |
| #ifdef VERIFY | |
| for (i = 0; i < len; i++) { | |
| SECP256K1_GE_VERIFY(&a[i]); | |
| SECP256K1_FE_VERIFY(&zr[i]); | |
| } | |
| #endif | |
| | |
| if (len > 0) { | |
| i = len - 1; | |
| /* Ensure all y values are in weak normal form for fast negation of points */ | |
| secp256k1_fe_normalize_weak(&a[i].y); | |
| zs = zr[i]; | |
| | |
| /* Work our way backwards, using the z-ratios to scale the x/y values. */ | |
| while (i > 0) { | |
| if (i != len - 1) { | |
| secp256k1_fe_mul(&zs, &zs, &zr[i]); | |
| } | |
| i--; | |
| secp256k1_ge_set_ge_zinv(&a[i], &a[i], &zs); | |
| } | |
| } | |
| | |
| #ifdef VERIFY | |
| for (i = 0; i < len; i++) { | |
| SECP256K1_GE_VERIFY(&a[i]); | |
| } | |
| #endif | |
| } | |
| | |
| static void secp256k1_gej_set_infinity(secp256k1_gej *r) { | |
| r->infinity = 1; | |
| secp256k1_fe_set_int(&r->x, 0); | |
| secp256k1_fe_set_int(&r->y, 0); | |
| secp256k1_fe_set_int(&r->z, 0); | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_ge_set_infinity(secp256k1_ge *r) { | |
| r->infinity = 1; | |
| secp256k1_fe_set_int(&r->x, 0); | |
| secp256k1_fe_set_int(&r->y, 0); | |
| | |
| SECP256K1_GE_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_gej_clear(secp256k1_gej *r) { | |
| secp256k1_memclear_explicit(r, sizeof(secp256k1_gej)); | |
| } | |
| | |
| static void secp256k1_ge_clear(secp256k1_ge *r) { | |
| secp256k1_memclear_explicit(r, sizeof(secp256k1_ge)); | |
| } | |
| | |
| static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { | |
| secp256k1_fe x2, x3; | |
| int ret; | |
| SECP256K1_FE_VERIFY(x); | |
| | |
| r->x = *x; | |
| secp256k1_fe_sqr(&x2, x); | |
| secp256k1_fe_mul(&x3, x, &x2); | |
| r->infinity = 0; | |
| secp256k1_fe_add_int(&x3, SECP256K1_B); | |
| ret = secp256k1_fe_sqrt(&r->y, &x3); | |
| secp256k1_fe_normalize_var(&r->y); | |
| if (secp256k1_fe_is_odd(&r->y) != odd) { | |
| secp256k1_fe_negate(&r->y, &r->y, 1); | |
| } | |
| | |
| SECP256K1_GE_VERIFY(r); | |
| return ret; | |
| } | |
| | |
| static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { | |
| SECP256K1_GE_VERIFY(a); | |
| | |
| r->infinity = a->infinity; | |
| r->x = a->x; | |
| r->y = a->y; | |
| secp256k1_fe_set_int(&r->z, 1); | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b) { | |
| secp256k1_gej tmp; | |
| SECP256K1_GEJ_VERIFY(b); | |
| SECP256K1_GEJ_VERIFY(a); | |
| | |
| secp256k1_gej_neg(&tmp, a); | |
| secp256k1_gej_add_var(&tmp, &tmp, b, NULL); | |
| return secp256k1_gej_is_infinity(&tmp); | |
| } | |
| | |
| static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b) { | |
| secp256k1_gej tmp; | |
| SECP256K1_GEJ_VERIFY(a); | |
| SECP256K1_GE_VERIFY(b); | |
| | |
| secp256k1_gej_neg(&tmp, a); | |
| secp256k1_gej_add_ge_var(&tmp, &tmp, b, NULL); | |
| return secp256k1_gej_is_infinity(&tmp); | |
| } | |
| | |
| static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b) { | |
| secp256k1_fe tmp; | |
| SECP256K1_GE_VERIFY(a); | |
| SECP256K1_GE_VERIFY(b); | |
| | |
| if (a->infinity != b->infinity) return 0; | |
| if (a->infinity) return 1; | |
| | |
| tmp = a->x; | |
| secp256k1_fe_normalize_weak(&tmp); | |
| if (!secp256k1_fe_equal(&tmp, &b->x)) return 0; | |
| | |
| tmp = a->y; | |
| secp256k1_fe_normalize_weak(&tmp); | |
| if (!secp256k1_fe_equal(&tmp, &b->y)) return 0; | |
| | |
| return 1; | |
| } | |
| | |
| static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) { | |
| secp256k1_fe r; | |
| SECP256K1_FE_VERIFY(x); | |
| SECP256K1_GEJ_VERIFY(a); | |
| VERIFY_CHECK(!a->infinity); | |
| | |
| secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); | |
| return secp256k1_fe_equal(&r, &a->x); | |
| } | |
| | |
| static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) { | |
| SECP256K1_GEJ_VERIFY(a); | |
| | |
| r->infinity = a->infinity; | |
| r->x = a->x; | |
| r->y = a->y; | |
| r->z = a->z; | |
| secp256k1_fe_normalize_weak(&r->y); | |
| secp256k1_fe_negate(&r->y, &r->y, 1); | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { | |
| SECP256K1_GEJ_VERIFY(a); | |
| | |
| return a->infinity; | |
| Access to field 'infinity' results in a dereference of a null pointer (loaded from variable 'a') | |
| Access to field 'infinity' results in a dereference of a null pointer (loaded from variable 'a') | |
| } | |
| | |
| static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { | |
| secp256k1_fe y2, x3; | |
| SECP256K1_GE_VERIFY(a); | |
| | |
| if (a->infinity) { | |
| return 0; | |
| } | |
| /* y^2 = x^3 + 7 */ | |
| secp256k1_fe_sqr(&y2, &a->y); | |
| secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
| secp256k1_fe_add_int(&x3, SECP256K1_B); | |
| return secp256k1_fe_equal(&y2, &x3); | |
| } | |
| | |
| static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) { | |
| /* Operations: 3 mul, 4 sqr, 8 add/half/mul_int/negate */ | |
| secp256k1_fe l, s, t; | |
| SECP256K1_GEJ_VERIFY(a); | |
| | |
| r->infinity = a->infinity; | |
| | |
| /* Formula used: | |
| * L = (3/2) * X1^2 | |
| * S = Y1^2 | |
| * T = -X1*S | |
| * X3 = L^2 + 2*T | |
| * Y3 = -(L*(X3 + T) + S^2) | |
| * Z3 = Y1*Z1 | |
| */ | |
| | |
| secp256k1_fe_mul(&r->z, &a->z, &a->y); /* Z3 = Y1*Z1 (1) */ | |
| secp256k1_fe_sqr(&s, &a->y); /* S = Y1^2 (1) */ | |
| secp256k1_fe_sqr(&l, &a->x); /* L = X1^2 (1) */ | |
| secp256k1_fe_mul_int(&l, 3); /* L = 3*X1^2 (3) */ | |
| secp256k1_fe_half(&l); /* L = 3/2*X1^2 (2) */ | |
| secp256k1_fe_negate(&t, &s, 1); /* T = -S (2) */ | |
| secp256k1_fe_mul(&t, &t, &a->x); /* T = -X1*S (1) */ | |
| secp256k1_fe_sqr(&r->x, &l); /* X3 = L^2 (1) */ | |
| secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + T (2) */ | |
| secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + 2*T (3) */ | |
| secp256k1_fe_sqr(&s, &s); /* S' = S^2 (1) */ | |
| secp256k1_fe_add(&t, &r->x); /* T' = X3 + T (4) */ | |
| secp256k1_fe_mul(&r->y, &t, &l); /* Y3 = L*(X3 + T) (1) */ | |
| secp256k1_fe_add(&r->y, &s); /* Y3 = L*(X3 + T) + S^2 (2) */ | |
| secp256k1_fe_negate(&r->y, &r->y, 2); /* Y3 = -(L*(X3 + T) + S^2) (3) */ | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { | |
| SECP256K1_GEJ_VERIFY(a); | |
| | |
| /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, | |
| * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have | |
| * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. | |
| * | |
| * Having said this, if this function receives a point on a sextic twist, e.g. by | |
| * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6, | |
| * since -6 does have a cube root mod p. For this point, this function will not set | |
| * the infinity flag even though the point doubles to infinity, and the result | |
| * point will be gibberish (z = 0 but infinity = 0). | |
| */ | |
| if (a->infinity) { | |
| secp256k1_gej_set_infinity(r); | |
| if (rzr != NULL) { | |
| secp256k1_fe_set_int(rzr, 1); | |
| } | |
| return; | |
| } | |
| | |
| if (rzr != NULL) { | |
| *rzr = a->y; | |
| secp256k1_fe_normalize_weak(rzr); | |
| } | |
| | |
| secp256k1_gej_double(r, a); | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { | |
| /* 12 mul, 4 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */ | |
| secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, h2, h3, t; | |
| SECP256K1_GEJ_VERIFY(a); | |
| SECP256K1_GEJ_VERIFY(b); | |
| | |
| if (a->infinity) { | |
| VERIFY_CHECK(rzr == NULL); | |
| *r = *b; | |
| return; | |
| } | |
| if (b->infinity) { | |
| if (rzr != NULL) { | |
| secp256k1_fe_set_int(rzr, 1); | |
| } | |
| *r = *a; | |
| return; | |
| } | |
| | |
| secp256k1_fe_sqr(&z22, &b->z); | |
| secp256k1_fe_sqr(&z12, &a->z); | |
| secp256k1_fe_mul(&u1, &a->x, &z22); | |
| secp256k1_fe_mul(&u2, &b->x, &z12); | |
| secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); | |
| secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
| secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
| secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1); | |
| if (secp256k1_fe_normalizes_to_zero_var(&h)) { | |
| if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
| secp256k1_gej_double_var(r, a, rzr); | |
| } else { | |
| if (rzr != NULL) { | |
| secp256k1_fe_set_int(rzr, 0); | |
| } | |
| secp256k1_gej_set_infinity(r); | |
| } | |
| return; | |
| } | |
| | |
| r->infinity = 0; | |
| secp256k1_fe_mul(&t, &h, &b->z); | |
| if (rzr != NULL) { | |
| *rzr = t; | |
| } | |
| secp256k1_fe_mul(&r->z, &a->z, &t); | |
| | |
| secp256k1_fe_sqr(&h2, &h); | |
| secp256k1_fe_negate(&h2, &h2, 1); | |
| secp256k1_fe_mul(&h3, &h2, &h); | |
| secp256k1_fe_mul(&t, &u1, &h2); | |
| | |
| secp256k1_fe_sqr(&r->x, &i); | |
| secp256k1_fe_add(&r->x, &h3); | |
| secp256k1_fe_add(&r->x, &t); | |
| secp256k1_fe_add(&r->x, &t); | |
| | |
| secp256k1_fe_add(&t, &r->x); | |
| secp256k1_fe_mul(&r->y, &t, &i); | |
| secp256k1_fe_mul(&h3, &h3, &s1); | |
| secp256k1_fe_add(&r->y, &h3); | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) { | |
| /* Operations: 8 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */ | |
| secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t; | |
| SECP256K1_GEJ_VERIFY(a); | |
| SECP256K1_GE_VERIFY(b); | |
| | |
| if (a->infinity) { | |
| VERIFY_CHECK(rzr == NULL); | |
| secp256k1_gej_set_ge(r, b); | |
| return; | |
| } | |
| if (b->infinity) { | |
| if (rzr != NULL) { | |
| secp256k1_fe_set_int(rzr, 1); | |
| } | |
| *r = *a; | |
| return; | |
| } | |
| | |
| secp256k1_fe_sqr(&z12, &a->z); | |
| u1 = a->x; | |
| secp256k1_fe_mul(&u2, &b->x, &z12); | |
| s1 = a->y; | |
| secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
| secp256k1_fe_negate(&h, &u1, SECP256K1_GEJ_X_MAGNITUDE_MAX); secp256k1_fe_add(&h, &u2); | |
| secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1); | |
| if (secp256k1_fe_normalizes_to_zero_var(&h)) { | |
| if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
| secp256k1_gej_double_var(r, a, rzr); | |
| } else { | |
| if (rzr != NULL) { | |
| secp256k1_fe_set_int(rzr, 0); | |
| } | |
| secp256k1_gej_set_infinity(r); | |
| } | |
| return; | |
| } | |
| | |
| r->infinity = 0; | |
| if (rzr != NULL) { | |
| *rzr = h; | |
| } | |
| secp256k1_fe_mul(&r->z, &a->z, &h); | |
| | |
| secp256k1_fe_sqr(&h2, &h); | |
| secp256k1_fe_negate(&h2, &h2, 1); | |
| secp256k1_fe_mul(&h3, &h2, &h); | |
| secp256k1_fe_mul(&t, &u1, &h2); | |
| | |
| secp256k1_fe_sqr(&r->x, &i); | |
| secp256k1_fe_add(&r->x, &h3); | |
| secp256k1_fe_add(&r->x, &t); | |
| secp256k1_fe_add(&r->x, &t); | |
| | |
| secp256k1_fe_add(&t, &r->x); | |
| secp256k1_fe_mul(&r->y, &t, &i); | |
| secp256k1_fe_mul(&h3, &h3, &s1); | |
| secp256k1_fe_add(&r->y, &h3); | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| if (rzr != NULL) SECP256K1_FE_VERIFY(rzr); | |
| } | |
| | |
| static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) { | |
| /* Operations: 9 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */ | |
| secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t; | |
| SECP256K1_GEJ_VERIFY(a); | |
| SECP256K1_GE_VERIFY(b); | |
| SECP256K1_FE_VERIFY(bzinv); | |
| | |
| if (a->infinity) { | |
| secp256k1_fe bzinv2, bzinv3; | |
| r->infinity = b->infinity; | |
| secp256k1_fe_sqr(&bzinv2, bzinv); | |
| secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); | |
| secp256k1_fe_mul(&r->x, &b->x, &bzinv2); | |
| secp256k1_fe_mul(&r->y, &b->y, &bzinv3); | |
| secp256k1_fe_set_int(&r->z, 1); | |
| SECP256K1_GEJ_VERIFY(r); | |
| return; | |
| } | |
| if (b->infinity) { | |
| *r = *a; | |
| return; | |
| } | |
| | |
| /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to | |
| * secp256k1's isomorphism we can multiply the Z coordinates on both sides | |
| * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). | |
| * This means that (rx,ry,rz) can be calculated as | |
| * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. | |
| * The variable az below holds the modified Z coordinate for a, which is used | |
| * for the computation of rx and ry, but not for rz. | |
| */ | |
| secp256k1_fe_mul(&az, &a->z, bzinv); | |
| | |
| secp256k1_fe_sqr(&z12, &az); | |
| u1 = a->x; | |
| secp256k1_fe_mul(&u2, &b->x, &z12); | |
| s1 = a->y; | |
| secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); | |
| secp256k1_fe_negate(&h, &u1, SECP256K1_GEJ_X_MAGNITUDE_MAX); secp256k1_fe_add(&h, &u2); | |
| secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1); | |
| if (secp256k1_fe_normalizes_to_zero_var(&h)) { | |
| if (secp256k1_fe_normalizes_to_zero_var(&i)) { | |
| secp256k1_gej_double_var(r, a, NULL); | |
| } else { | |
| secp256k1_gej_set_infinity(r); | |
| } | |
| return; | |
| } | |
| | |
| r->infinity = 0; | |
| secp256k1_fe_mul(&r->z, &a->z, &h); | |
| | |
| secp256k1_fe_sqr(&h2, &h); | |
| secp256k1_fe_negate(&h2, &h2, 1); | |
| secp256k1_fe_mul(&h3, &h2, &h); | |
| secp256k1_fe_mul(&t, &u1, &h2); | |
| | |
| secp256k1_fe_sqr(&r->x, &i); | |
| secp256k1_fe_add(&r->x, &h3); | |
| secp256k1_fe_add(&r->x, &t); | |
| secp256k1_fe_add(&r->x, &t); | |
| | |
| secp256k1_fe_add(&t, &r->x); | |
| secp256k1_fe_mul(&r->y, &t, &i); | |
| secp256k1_fe_mul(&h3, &h3, &s1); | |
| secp256k1_fe_add(&r->y, &h3); | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| | |
| static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { | |
| /* Operations: 7 mul, 5 sqr, 21 add/cmov/half/mul_int/negate/normalizes_to_zero */ | |
| secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; | |
| secp256k1_fe m_alt, rr_alt; | |
| int degenerate; | |
| SECP256K1_GEJ_VERIFY(a); | |
| SECP256K1_GE_VERIFY(b); | |
| VERIFY_CHECK(!b->infinity); | |
| | |
| /* In: | |
| * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. | |
| * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. | |
| * we find as solution for a unified addition/doubling formula: | |
| * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. | |
| * x3 = lambda^2 - (x1 + x2) | |
| * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). | |
| * | |
| * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: | |
| * U1 = X1*Z2^2, U2 = X2*Z1^2 | |
| * S1 = Y1*Z2^3, S2 = Y2*Z1^3 | |
| * Z = Z1*Z2 | |
| * T = U1+U2 | |
| * M = S1+S2 | |
| * Q = -T*M^2 | |
| * R = T^2-U1*U2 | |
| * X3 = R^2+Q | |
| * Y3 = -(R*(2*X3+Q)+M^4)/2 | |
| * Z3 = M*Z | |
| * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) | |
| * | |
| * This formula has the benefit of being the same for both addition | |
| * of distinct points and doubling. However, it breaks down in the | |
| * case that either point is infinity, or that y1 = -y2. We handle | |
| * these cases in the following ways: | |
| * | |
| * - If b is infinity we simply bail by means of a VERIFY_CHECK. | |
| * | |
| * - If a is infinity, we detect this, and at the end of the | |
| * computation replace the result (which will be meaningless, | |
| * but we compute to be constant-time) with b.x : b.y : 1. | |
| * | |
| * - If a = -b, we have y1 = -y2, which is a degenerate case. | |
| * But here the answer is infinity, so we simply set the | |
| * infinity flag of the result, overriding the computed values | |
| * without even needing to cmov. | |
| * | |
| * - If y1 = -y2 but x1 != x2, which does occur thanks to certain | |
| * properties of our curve (specifically, 1 has nontrivial cube | |
| * roots in our field, and the curve equation has no x coefficient) | |
| * then the answer is not infinity but also not given by the above | |
| * equation. In this case, we cmov in place an alternate expression | |
| * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these | |
| * expressions for lambda are defined, they are equal, and can be | |
| * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) | |
| * then substitution of x^3 + 7 for y^2 (using the curve equation). | |
| * For all pairs of nonzero points (a, b) at least one is defined, | |
| * so this covers everything. | |
| */ | |
| | |
| secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ | |
| u1 = a->x; /* u1 = U1 = X1*Z2^2 (GEJ_X_M) */ | |
| secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ | |
| s1 = a->y; /* s1 = S1 = Y1*Z2^3 (GEJ_Y_M) */ | |
| secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ | |
| secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ | |
| t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (GEJ_X_M+1) */ | |
| m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (GEJ_Y_M+1) */ | |
| secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ | |
| secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 (2) */ | |
| secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (1) */ | |
| secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (2) */ | |
| /* If lambda = R/M = R/0 we have a problem (except in the "trivial" | |
| * case that Z = z1z2 = 0, and this is special-cased later on). */ | |
| degenerate = secp256k1_fe_normalizes_to_zero(&m); | |
| /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. | |
| * This means either x1 == beta*x2 or beta*x1 == x2, where beta is | |
| * a nontrivial cube root of one. In either case, an alternate | |
| * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), | |
| * so we set R/M equal to this. */ | |
| rr_alt = s1; | |
| secp256k1_fe_mul_int(&rr_alt, 2); /* rr_alt = Y1*Z2^3 - Y2*Z1^3 (GEJ_Y_M*2) */ | |
| secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 (GEJ_X_M+2) */ | |
| | |
| secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); /* rr_alt (GEJ_Y_M*2) */ | |
| secp256k1_fe_cmov(&m_alt, &m, !degenerate); /* m_alt (GEJ_X_M+2) */ | |
| /* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0. | |
| * From here on out Ralt and Malt represent the numerator | |
| * and denominator of lambda; R and M represent the explicit | |
| * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ | |
| secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ | |
| secp256k1_fe_negate(&q, &t, | |
| SECP256K1_GEJ_X_MAGNITUDE_MAX + 1); /* q = -T (GEJ_X_M+2) */ | |
| secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */ | |
| /* These two lines use the observation that either M == Malt or M == 0, | |
| * so M^3 * Malt is either Malt^4 (which is computed by squaring), or | |
| * zero (which is "computed" by cmov). So the cost is one squaring | |
| * versus two multiplications. */ | |
| secp256k1_fe_sqr(&n, &n); /* n = Malt^4 (1) */ | |
| secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (GEJ_Y_M+1) */ | |
| secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ | |
| secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */ | |
| secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */ | |
| r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */ | |
| secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */ | |
| secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */ | |
| secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */ | |
| secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (GEJ_Y_M+2) */ | |
| secp256k1_fe_negate(&r->y, &t, | |
| SECP256K1_GEJ_Y_MAGNITUDE_MAX + 2); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (GEJ_Y_M+3) */ | |
| secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 ((GEJ_Y_M+3)/2 + 1) */ | |
| | |
| /* In case a->infinity == 1, replace r with (b->x, b->y, 1). */ | |
| secp256k1_fe_cmov(&r->x, &b->x, a->infinity); | |
| secp256k1_fe_cmov(&r->y, &b->y, a->infinity); | |
| secp256k1_fe_cmov(&r->z, &secp256k1_fe_one, a->infinity); | |
| | |
| /* Set r->infinity if r->z is 0. | |
| * | |
| * If a->infinity is set, then r->infinity = (r->z == 0) = (1 == 0) = false, | |
| * which is correct because the function assumes that b is not infinity. | |
| * | |
| * Now assume !a->infinity. This implies Z = Z1 != 0. | |
| * | |
| * Case y1 = -y2: | |
| * In this case we could have a = -b, namely if x1 = x2. | |
| * We have degenerate = true, r->z = (x1 - x2) * Z. | |
| * Then r->infinity = ((x1 - x2)Z == 0) = (x1 == x2) = (a == -b). | |
| * | |
| * Case y1 != -y2: | |
| * In this case, we can't have a = -b. | |
| * We have degenerate = false, r->z = (y1 + y2) * Z. | |
| * Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */ | |
| r->infinity = secp256k1_fe_normalizes_to_zero(&r->z); | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) { | |
| /* Operations: 4 mul, 1 sqr */ | |
| secp256k1_fe zz; | |
| SECP256K1_GEJ_VERIFY(r); | |
| SECP256K1_FE_VERIFY(s); | |
| VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(s)); | |
| | |
| secp256k1_fe_sqr(&zz, s); | |
| secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ | |
| secp256k1_fe_mul(&r->y, &r->y, &zz); | |
| secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ | |
| secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) { | |
| secp256k1_fe x, y; | |
| SECP256K1_GE_VERIFY(a); | |
| VERIFY_CHECK(!a->infinity); | |
| | |
| x = a->x; | |
| secp256k1_fe_normalize(&x); | |
| y = a->y; | |
| secp256k1_fe_normalize(&y); | |
| secp256k1_fe_to_storage(&r->x, &x); | |
| secp256k1_fe_to_storage(&r->y, &y); | |
| } | |
| | |
| static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) { | |
| secp256k1_fe_from_storage(&r->x, &a->x); | |
| secp256k1_fe_from_storage(&r->y, &a->y); | |
| r->infinity = 0; | |
| | |
| SECP256K1_GE_VERIFY(r); | |
| } | |
| | |
| static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag) { | |
| SECP256K1_GEJ_VERIFY(r); | |
| SECP256K1_GEJ_VERIFY(a); | |
| VERIFY_CHECK(flag == 0 || flag == 1); | |
| | |
| secp256k1_fe_cmov(&r->x, &a->x, flag); | |
| secp256k1_fe_cmov(&r->y, &a->y, flag); | |
| secp256k1_fe_cmov(&r->z, &a->z, flag); | |
| r->infinity ^= (r->infinity ^ a->infinity) & flag; | |
| | |
| SECP256K1_GEJ_VERIFY(r); | |
| } | |
| | |
| static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { | |
| VERIFY_CHECK(flag == 0 || flag == 1); | |
| secp256k1_fe_storage_cmov(&r->x, &a->x, flag); | |
| secp256k1_fe_storage_cmov(&r->y, &a->y, flag); | |
| } | |
| | |
| static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { | |
| SECP256K1_GE_VERIFY(a); | |
| | |
| *r = *a; | |
| secp256k1_fe_mul(&r->x, &r->x, &secp256k1_const_beta); | |
| | |
| SECP256K1_GE_VERIFY(r); | |
| } | |
| | |
| static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) { | |
| #ifdef EXHAUSTIVE_TEST_ORDER | |
| secp256k1_gej out; | |
| int i; | |
| SECP256K1_GE_VERIFY(ge); | |
| | |
| /* A very simple EC multiplication ladder that avoids a dependency on ecmult. */ | |
| secp256k1_gej_set_infinity(&out); | |
| for (i = 0; i < 32; ++i) { | |
| secp256k1_gej_double_var(&out, &out, NULL); | |
| if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) { | |
| secp256k1_gej_add_ge_var(&out, &out, ge, NULL); | |
| } | |
| } | |
| return secp256k1_gej_is_infinity(&out); | |
| #else | |
| SECP256K1_GE_VERIFY(ge); | |
| | |
| (void)ge; | |
| /* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */ | |
| return 1; | |
| #endif | |
| } | |
| | |
| static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x) { | |
| secp256k1_fe c; | |
| secp256k1_fe_sqr(&c, x); | |
| secp256k1_fe_mul(&c, &c, x); | |
| secp256k1_fe_add_int(&c, SECP256K1_B); | |
| return secp256k1_fe_is_square_var(&c); | |
| } | |
| | |
| static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd) { | |
| /* We want to determine whether (xn/xd) is on the curve. | |
| * | |
| * (xn/xd)^3 + 7 is square <=> xd*xn^3 + 7*xd^4 is square (multiplying by xd^4, a square). | |
| */ | |
| secp256k1_fe r, t; | |
| VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(xd)); | |
| | |
| secp256k1_fe_mul(&r, xd, xn); /* r = xd*xn */ | |
| secp256k1_fe_sqr(&t, xn); /* t = xn^2 */ | |
| secp256k1_fe_mul(&r, &r, &t); /* r = xd*xn^3 */ | |
| secp256k1_fe_sqr(&t, xd); /* t = xd^2 */ | |
| secp256k1_fe_sqr(&t, &t); /* t = xd^4 */ | |
| VERIFY_CHECK(SECP256K1_B <= 31); | |
| secp256k1_fe_mul_int(&t, SECP256K1_B); /* t = 7*xd^4 */ | |
| secp256k1_fe_add(&r, &t); /* r = xd*xn^3 + 7*xd^4 */ | |
| return secp256k1_fe_is_square_var(&r); | |
| } | |
| | |
| static void secp256k1_ge_to_bytes(unsigned char *buf, const secp256k1_ge *a) { | |
| secp256k1_ge_storage s; | |
| | |
| /* We require that the secp256k1_ge_storage type is exactly 64 bytes. | |
| * This is formally not guaranteed by the C standard, but should hold on any | |
| * sane compiler in the real world. */ | |
| STATIC_ASSERT(sizeof(secp256k1_ge_storage) == 64); | |
| VERIFY_CHECK(!secp256k1_ge_is_infinity(a)); | |
| secp256k1_ge_to_storage(&s, a); | |
| memcpy(buf, &s, 64); | |
| } | |
| | |
| static void secp256k1_ge_from_bytes(secp256k1_ge *r, const unsigned char *buf) { | |
| secp256k1_ge_storage s; | |
| | |
| STATIC_ASSERT(sizeof(secp256k1_ge_storage) == 64); | |
| memcpy(&s, buf, 64); | |
| secp256k1_ge_from_storage(r, &s); | |
| } | |
| | |
| static void secp256k1_ge_to_bytes_ext(unsigned char *data, const secp256k1_ge *ge) { | |
| if (secp256k1_ge_is_infinity(ge)) { | |
| memset(data, 0, 64); | |
| } else { | |
| secp256k1_ge_to_bytes(data, ge); | |
| } | |
| } | |
| | |
| static void secp256k1_ge_from_bytes_ext(secp256k1_ge *ge, const unsigned char *data) { | |
| static const unsigned char zeros[64] = { 0 }; | |
| if (secp256k1_memcmp_var(data, zeros, sizeof(zeros)) == 0) { | |
| secp256k1_ge_set_infinity(ge); | |
| } else { | |
| secp256k1_ge_from_bytes(ge, data); | |
| } | |
| } | |
| | |
| #endif /* SECP256K1_GROUP_IMPL_H */ | |